Publikace UTB
Repozitář publikační činnosti UTB

Efficient representation and derivation of fundamental transformation of relationships using Euler angles and quaternions

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Efficient representation and derivation of fundamental transformation of relationships using Euler angles and quaternions en
dc.contributor.author Chudá, Hana
dc.relation.ispartof WSEAS Transactions on Systems
dc.identifier.issn 1109-2777 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2019
utb.relation.volume 18
dc.citation.spage 221
dc.citation.epage 228
dc.type article
dc.language.iso en
dc.publisher World Scientific and Engineering Academy and Society
dc.relation.uri https://wseas.com/journals/articles.php?id=1537
dc.relation.uri https://www.wseas.org/multimedia/journals/systems/2019/a525102-906.pdf
dc.subject Euler angles en
dc.subject quaternion en
dc.subject rotation matrix en
dc.subject equations of rotation en
dc.subject general operator of quaternion rotation en
dc.description.abstract This paper introduces and defines two principal rotational methods;the Euler angles and the quaternions theories with a brief insight into their definitions and algebraic properties. These methods are widely used in various scientific fields, only marginally in the aircraft industry, the robotics, the quantum mechanics, the electro mechanics, the cameras systems, the computer graphics, the heavy industry and other. The main part of this paper is devoted to the derivation of basic equations of the vector rotation around each rotational x, y, z axis using both rotational methods. Then, the general three-dimensional rotation matrix and the general operator of the quaternion rotation are derived. Finally the utilization of the matrices and quaternion equations are demonstrated on a simple example. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011465
utb.identifier.scopus 2-s2.0-85149750438
utb.source j-scopus
dc.date.accessioned 2023-03-20T08:32:21Z
dc.date.available 2023-03-20T08:32:21Z
dc.description.sponsorship 30196041025
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Department of Mathematics
utb.contributor.internalauthor Chudá, Hana
utb.fulltext.affiliation HANA CHUDÁ Tomas Bata University in Zlin, Faculty of Applied Informatics Department of Mathematics Nad Stráněmi 4511, 76005 Zlin CZECH REPUBLIC [email protected]
utb.fulltext.references [1] A. Watt, M. Watt, Advanced Animation and Rendering Techniques, ACM Press, San Francisco 1992 [2] M. J. Amoruso, Euler angles and quaternions in six degree of freedomsimulations of projectiles, Army Armament Research Developmentand Engineering Center Picatinny Arsenal NJ Armament Engineering Directorate, Tech. Rep., 1996 [3] L. Perumal, Quaternion and Its Application in Rotation Using Sets of Regions, IJETI 1, 2011, pp. 35 − 52. [4] L. Vicci, Quaternions and Rotations in 3-Space: The Algebra and its Geometric Interpretation, Department of Computer Science UNC Chapel Hill, 2001, pp. 1 − −11. [5] B.K.P. Horn, Closed-form solution of absolute orientation using unit quaternions, JOSA 4(4), 1987, pp. 629 − 642. [6] E.B. Dam, M. Koch, M. Lillholm, Quaternions, Interpolation and Animation, University of Copenhagen Press, Copenhagen 1998 [7] W.R. Hamilton, On quaternions; or on a new system of imagniaries in algebra. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 25(3), 1844, pp. 489 − 495. [8] J.B. Kuipers, Quaternions and Rotation Sequences, Princeton University Press, Princeton 1999 [9] M. Ben-Ari, A Tutorial on Euler Angles and Quaternions. Available from: < http://www.weizmann.ac.il/scitea/benari/sites/sci−tea.benari/files/uploads/softwareAndLearningMaterials.pdf > [10] Y.B. Jia, Quaternion and Rotation, Com S Notes 477/577 15, 2017 [11] J. Vince,Quaternions for Computer Graphics, Springer –Verlag, Berlin–Heidelberg–New York–Tokyo 2011 [12] B. Witten, J. Shragge,Quaternion based Signal Processing, Standford University, New Orleans, 2006 [13] J. Diebel, Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix 58, 2006, pp. 1–35 [14] S. Zomorodi, Quaternions Approach in Studying Rotation. Available from: < https://www.academia.edu/32250200/QuaternionsApproachinStudyingRotation?autodownload > [15] J.G. Campbell,Notes on Mathematics for 2D and 3D Graphics. Available from: < http://www.jgcampbell.com/msc2d3d/grmaths.pdf > [16] B. Saleh, Computer GraphicsFundamental: 2D and 3D Affine Transformations.Available from: < https://s3.amazonaws.com/academia.edu.documents/53228060/CG2Dand3DAffineTransformation.pdf?AWSAccessKeyIdAKIAIWOWYYGZ2Y53UL3AExpires1559638120qgQS4aOXi38SRTz5pRKSKUzPv2B43.pdf >
utb.fulltext.sponsorship The research was supported by the Grant of TBU in Zlin (grant No. 30196041025).
utb.scopus.affiliation Tomas Bata University in Zlin, Faculty of Applied Informatics, Department of Mathematics, Nad Stráněmi 4511, Zlin, 76005, Czech Republic
utb.fulltext.projects 30196041025
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.ou Department of Mathematics
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International