Publikace UTB
Repozitář publikační činnosti UTB

Simple software simulator for teaching embedded programming

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Simple software simulator for teaching embedded programming en
dc.contributor.author Dolinay, Jan
dc.contributor.author Dostálek, Petr
dc.contributor.author Vašek, Vladimír
dc.relation.ispartof International Journal of Engineering Pedagogy
dc.identifier.issn 2192-4880 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 12
utb.relation.issue 6
dc.citation.spage 128
dc.citation.epage 140
dc.type article
dc.language.iso en
dc.publisher Int Assoc Online Engineering
dc.identifier.doi 10.3991/ijep.v12i6.28193
dc.relation.uri https://online-journals.org/index.php/i-jep/article/view/28193
dc.relation.uri https://online-journals.org/index.php/i-jep/article/view/28193/12445
dc.subject microcontroller en
dc.subject simulator en
dc.subject Kinetis en
dc.subject embedded programming en
dc.description.abstract This article presents simple software simulator of a microcontroller evaluation board FRDM-KL25Z. The simulator was developed to make it possible to teach our embedded systems course online during the COVID-19 pandemic. It is in principle a software library that handles function calls and register access from student's program and displays the outputs in a console window of a stan-dard desktop application. It does not require any special hardware or software tools except an IDE capable of building C++ applications for the desktop com-puter. It can be easily modified for different microcontrollers and thus can be useful if existing lessons need to be switched from in-person to distance learning at a short notice. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011322
utb.identifier.obdid 43884009
utb.identifier.scopus 2-s2.0-85147558234
utb.identifier.wok 000898786600007
utb.source J-wok
dc.date.accessioned 2023-02-15T08:06:27Z
dc.date.available 2023-02-15T08:06:27Z
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Dolinay, Jan
utb.contributor.internalauthor Dostálek, Petr
utb.contributor.internalauthor Vašek, Vladimír
utb.fulltext.affiliation Jan Dolinay(✉), Petr Dostalek, Vladimir Vašek Tomas Bata University in Zlin, Zlín, Czech Republic [email protected] 7 Authors Jan Dolinay, Tomas Bata University in Zlin, Zlín, Czech Republic. E-mail: [email protected] Petr Dostalek, Tomas Bata University in Zlin, Zlín, Czech Republic. Vladimir Vašek, Tomas Bata University in Zlin, Zlín, Czech Republic.
utb.fulltext.dates Article submitted 2021-11-10. Resubmitted 2022-04-19. Final acceptance 2022-11-07. PUBLISHED 2022-12-13
utb.fulltext.references [1] Ž. Bojović, P. D. Bojović, D. Vujošević and J. Šuh, “Education in Times of Crisis: Rapid Transition to Distance Learning,” Comput Appl Eng Educ., vol. 28, pp. 1467–1489, 2020. https://doi.org/10.1002/cae.22318 [2] P. Jana, N. Nurchasanah and S. Fatih ‘Adna, “E-Learning During Pandemic Covid-19 Era: Drill Versus Conventional Models,” International Journal of Engineering Pedagogy, vol. 11, no. 3, pp. 54–70, 2021. https://doi.org/10.3991/ijep.v11i3.16505 [3] N. Muhammad and S. Srinivasan, “Online Education During a Pandemic – Adaptation and Impact on Student Learning,” International Journal of Engineering Pedagogy, vol. 11, no. 3, pp. 71–83, 2021. https://doi.org/10.3991/ijep.v11i3.20449 [4] D. Idnani, A. Kubadia, Y. Jain and C. P. Prathamesh, “Experience of Conducting Online Test During COVID-19 Lockdown: A Case Study of NMIMS University,” International Journal of Engineering Pedagogy, vol. 11, no. 1, pp. 49–63, 2021. https://doi.org/10.3991/ijep.v11i1.15215 [5] L. N. Fewella, L. M. Khodeir and A. H. Swidan, “Impact of Integrated E-learning: Tradi-tional Approach to Teaching Engineering Perspective Courses,” International Journal of Engineering Pedagogy, vol. 11, no. 2, pp. 82–101, 2021. https://doi.org/10.3991/ijep.v11i2.17777 [6] I. A. Elhaty, T. Elhadary, R. Elgamil and H. Kilic, “Teaching University Practical Courses Online during COVID-19 Crisis: A Challenge for Elearning,” J. Crit. Rev., vol. 7, no. 8, pp. 1–10, 2020. [7] J. Dolinay, P. Dostálek and V. Vašek, “ARM-Based Microcontroller Platform for Teach-ing Microcontroller Programming,” International Journal of Education and Information Technologies, vol. 10, pp. 113–119, 2016. [8] J. Ma and J. V. Nickerson, “Hands-On Simulated and Remote Laboratories: A Compara-tive Literature Review,” ACM Comput. Surv., vol. 38, no. 3, pp. 7, 2006. https://doi.org/ 10.1145/1132960.1132961 [9] M. Gilibert, J. Picazo, M. Auer, A. Pester, J. Cusidó and J. A. Ortega, “80C537 Microcon-troller Remote Lab for E-Learning Teaching,” International Journal of Online Engineering, vol. 2, no. 4, pp. 1–3, 2006. [10] N. Alamatsaz and A. Ihlefeld, “Teaching Electronic Circuit Fundamentals via Remote Laboratory Curriculum,” Biomedical Engineering Education, vol. 1, no. 1, pp. 105–108, 2021. https://doi.org/10.1007/s43683-020-00008-x [11] M. Hedley and S. Barrie, “An Undergraduate Microcontroller Systems Laboratory,” IEEE Trans. on Education, pp. 345–353, 1998. https://doi.org/10.1109/TE.1998.787371 [12] L. Newton, and L. Rogers, “Thinking Frameworks for Planning ICT in Science Lessons,” School Science Review, pp. 113–120, 2003. [13] S. Tang, “An Interactive Simulator-Based Pedagogical (ISP) Approach for Teaching Microcontrollers in Engineering Programs,” Advances in Engineering Education, pp. 1–18, 2014. [14] N. Swain, “Teaching Microcontrollers through Simulation,” in 2011 ASEE Annual Confer-ence & Exposition, Vancouver, BC, Canada, 2011, pp. 1–14. [15] F. Paulo, J. S. Gonçalves, A. Coelho and J. Durães, “An Arduino Simulator in Classroom – a Case Study,” in First International Computer Programming Education Conference (ICPEC 2020), Online, 2020. [16] S. Sirowy, D. Sheldon, T. Givargis and F. Vahid, “Virtual Microcontrollers,” ACM SIGBED Review, vol. 6, no. 1, pp. 1–8, 2009. https://doi.org/10.1145/1534480.1534486 [17] M. Koenig and R. Rasch, “Digital Teaching an Embedded Systems Course by Using Sim-ulators,” 2021 ACM/IEEE Workshop on Computer Architecture Education (WCAE), 2021, pp. 1–7. https://doi.org/10.1109/WCAE53984.2021.9707146 [18] J. W. Valvano, R. Yerraballi, and C. Fulton, 2016. Teaching Embedded Systems in a MOOC Format. 2016 ASEE Annual Conference & Exposition, June 28, 2016, New Orleans, USA. [19] J. V. LeJeune, A Meta-Analysis of Outcomes from the Use of Computer-Simulated Experiments in Science Education, Dissertation, Texas A&M University, 2002. [20] A. Zendler, H. Greiner, The Effect of Two Instructional Methods on Learning Outcome in Chemistry Education: The Experiment Method and Computer Simulation, Education for Chemical Engineers, vol. 30, pp. 9–19, 2020. https://doi.org/10.1016/j.ece.2019.09.001 [21] Crossware (2020). ARM Simulator [Online]. Available: https://www.crossware.com/arm/simulator
utb.fulltext.sponsorship -
utb.wos.affiliation [Dolinay, Jan; Dostalek, Petr; Vasek, Vladimir] Tomas Bata Univ Zlin, Zlin, Czech Republic
utb.scopus.affiliation Tomas Bata University in Zlin, Zlín, Czech Republic
utb.fulltext.projects -
utb.fulltext.faculty -
utb.fulltext.faculty -
utb.fulltext.faculty -
utb.fulltext.ou -
utb.fulltext.ou -
utb.fulltext.ou -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International