Publikace UTB
Repozitář publikační činnosti UTB

Engineering Se/N co-doped hard CNTs with localized electron configuration for superior potassium storage

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Engineering Se/N co-doped hard CNTs with localized electron configuration for superior potassium storage en
dc.contributor.author Xu, Da
dc.contributor.author Cheng, Qilin
dc.contributor.author Sáha, Petr
dc.contributor.author Hu, Yanjie
dc.contributor.author Chen, Ling
dc.contributor.author Jiang, Hao
dc.contributor.author Li, Chunzhong
dc.relation.ispartof Advanced Functional Materials
dc.identifier.issn 1616-301X Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1616-3028 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2023
utb.relation.volume 33
utb.relation.issue 5
dc.type article
dc.language.iso en
dc.publisher John Wiley and Sons Inc
dc.identifier.doi 10.1002/adfm.202211661
dc.relation.uri https://onlinelibrary.wiley.com/doi/10.1002/adfm.202211661
dc.relation.uri https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202211661
dc.subject cycle life en
dc.subject electron configurations en
dc.subject hard-CNTs en
dc.subject heteroatom doping en
dc.subject K-ion batteries en
dc.description.abstract The earth-abundant hard carbons have drawn great concentration as potassium-ion batteries (KIBs) anode materials because of their richer K-storage sites and wider interlayer distance versus graphite, but suffer from a low electrochemical reversibility. Herein, the novel Se/N co-doped hard-carbon nanotubes (h-CNTs) with localized electron configuration are demonstrated by creating unique N-Se-C covalent bonds stemmed from the precise doping of Se atoms into carbon edges and the subsequent bonding with pyrrole-N. The strong electron-donating ability of Se atoms on d-orbital provides abundant free electrons to effectively relieve charge polarization of pyrrole-N-C bonds, which contributes to balance the K-ion adsorption/desorption, therefore greatly boosting reversible K-ion storage capacity. After filtering into self-standing anodes with weights of 1.5–12.4 mg cm−2, all of them deliver a high reversible gravimetric capacity of 341 ± 4 mAh g−1 at 0.2 A g−1 and a linear increasing areal capacity to 4.06 mAh cm−2. The self-standing anode can still maintain 209 mAh g−1 at 8.0 A g−1 (93.3% retention) for a long period of 2000 cycles with a constant Se/N content. © 2022 Wiley-VCH GmbH. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1011269
utb.identifier.obdid 43884255
utb.identifier.scopus 2-s2.0-85142264218
utb.identifier.wok 000888398400001
utb.identifier.coden AFMDC
utb.source j-scopus
dc.date.accessioned 2023-01-06T08:04:00Z
dc.date.available 2023-01-06T08:04:00Z
dc.description.sponsorship National Natural Science Foundation of China, NSFC: 21975074, 22208102; Shanghai Municipal Education Commission; Fundamental Research Funds for the Central Universities: 222201718002
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Sáha, Petr
utb.fulltext.affiliation Da Xu, Qilin Cheng, Petr Saha, Yanjie Hu, Ling Chen,* Hao Jiang,* and Chunzhong Li D. Xu, Q. Cheng, Y. Hu, H. Jiang, C. Li Shanghai Engineering Research Center of Hierarchical Nanomaterials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237, China E-mail: [email protected] P. Saha Centre of Polymer Systems University Institute Tomas Bata University in Zlin Trida T. Bati 5678, Zlin 76001, Czech Republic E-mail: [email protected] L. Chen, C. Li Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemical Engineering East China University of Science and Technology Shanghai 200237, China The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adfm.202211661.
utb.fulltext.dates Received: October 9, 2022 Revised: October 25, 2022 Published online: First published: 17 November 2022
utb.fulltext.references [1] C. Hu, Y. J. Hu, A. P. Chen, X. Z. Duan, H. Jiang, C. Z. Li, Engineering 2022, https://doi.org/10.1016/j.eng.2021.11.026. [2] C. Hu, L. Chen, Y. J. Hu, A. P. Chen, L. Chen, H. Jiang, C. Z. Li, Adv. Mater. 2021, 33, 2103558. [3] F. Y. He, C. Tang, G. J. Zhu, Y. D. Liu, A. J. Du, Q. B. Zhang, M. H. Wu, H. J. Zhang, Sci China Chem 2021, 64, 964. [4] C. Hu, K. Ma, Y. J. Hu, A. P. Chen, P. Saha, H. Jiang, C. Z. Li, Green Energy Environ. 2021, 6, 75. [5] M. Y. Gu, L. Fan, J. Zhou, A. Rao, B. A. Lu, ACS Nano 2021, 15, 9167. [6] D. Xu, L. Chen, X. Z. Su, H. L. Jiang, C. Lian, H. L. Liu, L. Chen, Y. J. Hu, H. Jiang, C. Z. Li, Adv. Funct. Mater. 2022, 32, 2110223. [7] W. C. Zhang, Y. J. Liu, Z. P. Guo, Sci. Adv. 2019, 5, eaav7412. [8] Y. M. Wu, H. T. Zhao, Z. G. Wu, L. C. Yue, J. Liang, Q. Liu, Y. L. Luo, S. Y. Gao, S. Y. Lu, G. Chen, X. F. Shi, B. H. Zhong, X. D. Guo, X. P. Sun, Energy Storage Mater. 2021, 34, 483. [9] H. F. Yu, H. W. Zhu, H. L. Jiang, X. Z. Su, Y. J. Hu, H. Jiang, C. Z. Li, Natl Sci Rev 2022, https://doi.org/10.1093/nsr/nwac166. [10] Z. H. Sun, Y. Liu, W. B. Ye, J. Y. Zhang, Y. Y. Wang, Y. Lin, L. R. Hou, M. S. Wang, C. Z. Yuan, Angew. Chem., Int. Ed. 2021, 60, 7180. [11] H. B. Ding, J. Zhou, A. M. Rao, B. A. Lu, Natl Sci Rev 2021, 8, nwaa276. [12] L. F. Zhao, Z. Hu, W. H. Lai, Y. Tao, J. Peng, Z. C. Miao, Y. X. Wang, S. L. Chou, H. K. Liu, S. X. Dou, Adv. Energy Mater. 2021, 11, 2002704. [13] J. T. Chen, B. J. Yang, H. J. Hou, H. X. Li, L. Liu, L. Zhang, X. B. Yan, Adv. Energy Mater. 2019, 9, 1803894. [14] X. F. Zhou, L. L. Chen, W. H. Zhang, J. W. Wang, Z. J. Liu, S. F. Zeng, R. Xu, Y. Wu, S. F. Ye, Y. Z. Feng, X. L. Cheng, Z. Q. Peng, X. F. Li, Y. Yu, Nano Lett. 2019, 19, 4965. [15] L. Li, Y. T. Li, Y. Ye, R. T. Guo, A. N. Wang, G. Q. Zou, H. S. Hou, X. B. Ji, ACS Nano 2021, 15, 6872. [16] H. J. Huang, R. Xu, Y. Z. Feng, S. F. Zeng, Y. Jiang, H. J. Wang, W. Luo, Y. Yu, Adv. Mater. 2020, 32, 1904320. [17] X. Q. Chang, X. L. Zhou, X. W. Ou, C. S. Lee, J. W. Zhou, Y. B. Tang, Adv. Energy Mater. 2019, 9, 1902672. [18] W. L. Zhang, Z. Cao, W. X. Wang, E. Alhajji, A. H. Emwas, P. Costa, L. G. Cavallo, H. N. Alshareef, Angew. Chem., Int. Ed. 2020, 9, 4448. [19] X. Q. Ma, N. Xiao, J. Xiao, X. D. Song, H. D. Guo, Y. T. Wang, S. J. Zhao, Y. P. Zhong, J. S. Qiu, Carbon 2021, 179, 33. [20] J. Y. Gao, G. R. Wang, W. T. Wang, L. Yu, B. Peng, A. E. Harairy, J. Li, G. Q. Zhang, ACS Nano 2022, 16, 6255. [21] L. Chen, C. Lian, H. Jiang, L. X. Chen, J. Yan, H. L. Liu, C. Z. Li, Chem. Eng. Sci. 2020, 217, 115496. [22] J. Ding, H. L. Zhang, H. Zhou, J. Feng, X. R. Zheng, C. Zhong, E. Paek, W. B. Hu, D. Mitlin, Adv. Mater. 2019, 31, 1900429. [23] J. W. Li, X. Hu, G. B. Zhong, Y. J. Liu, Y. X. Ji, J. X. Chen, Z. H. Wen, Nano 2021, 13, 131. [24] J. J. Zhang, Y. H. Xu, L. Fan, Y. C. Zhu, J. W. Liang, Y. T. Qian, Nano Energy 2015, 13, 592. [25] W. T. Feng, N. Y. Feng, W. Liu, Y. P. Cui, C. Chen, T. T. Dong, S. Liu, W. Q. Deng, H. L. Wang, Y. C. Jin, Adv. Energy Mater. 2021, 11, 2003215. [26] Y. P. Cui, W. Liu, X. Wang, J. J. Li, Y. Zhang, Y. X. Du, S. Liu, H. L. Wang, W. T. Feng, M. Chen, ACS Nano 2019, 13, 11582. [27] D. M. Chen, Z. Q. Huang, S. Q. Sun, H. Y. Zhang, W. J. Wang, G. X. Yu, ACS Appl. Mater. Interfaces 2021, 13, 44369. [28] S. F. Zeng, X. J. Chen, R. Xu, X. J. Wu, Y. Z. Feng, H. B. Zhang, S. M. Peng, Y. Yu, Nano Energy 2020, 73, 104807. [29] C. Shen, K. Yuan, T. Tian, M. H. Bai, J. G. Wang, X. F. Li, K. Y. Xie, Q. G. Fu, B. Q. Wei, ACS Appl. Mater. Interfaces 2019, 11, 5015. [30] S. F. Zeng, X. F. Zhou, B. Wang, Y. Z. Feng, R. Xu, H. B. Zhang, S. M. Peng, Y. Yu, J. Mater. Chem. A 2019, 7, 15774. [31] W. X. Yang, J. H. Zhou, S. Wang, W. Y. Zhang, Z. C. Wang, F. Lv, K. Wang, Q. Sun, S. J. Guo, Energy Environ. Sci. 2019, 12, 1605. [32] K. Wang, N. N. Li, L. Sun, J. Zhang, X. H. Liu, ACS Appl. Mater. Interfaces 2020, 12, 37506. [33] X. Hu, G. B. Zhong, J. W. Li, Y. J. Liu, J. Yuan, J. X. Chen, H. B. Zhan, Z. H. Wen, Energy Environ. Sci. 2020, 13, 2431. [34] Y. Z. Liu, C. H. Yang, Q. C. Pan, Y. P. Li, G. Wang, X. Ou, F. H. Zheng, X. H. Xiong, M. L. Liu, Q. Y. Zhang, J. Mater. Chem. A 2018, 6, 15162. [35] W. D. Qiu, H. B. Xiao, Y. Li, X. H. Lu, Y. X. Tong, Small 2019, 15, 1901285. [36] L. Liu, Y. Chen, Y. H. Xie, P. Tao, Q. Y. Li, C. L. Yan, Adv. Funct. Mater. 2018, 28, 1801989.
utb.fulltext.sponsorship This work was supported by the National Natural Science Foundation of China (22208102, 21975074), the Innovation Program of Shanghai Municipal Education Commission, and the Fundamental Research Funds for the Central Universities (222201718002).
utb.wos.affiliation [Xu, Da; Cheng, Qilin; Hu, Yanjie; Jiang, Hao; Li, Chunzhong] East China Univ Sci & Technol, Shanghai Engn Res Ctr Hierarch Nanomat, Sch Mat Sci & Engn, Shanghai 200237, Peoples R China; [Saha, Petr] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Trida T Bati 5678, Zlin 76001, Czech Republic; [Chen, Ling; Li, Chunzhong] East China Univ Sci & Technol, Frontiers Sci Ctr Materiobiol & Dynam Chem, Sch Chem Engn, Lab Ultrafine Mat,Minist Educ, Shanghai 200237, Peoples R China
utb.scopus.affiliation Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, Zlin, 76001, Czech Republic; Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
utb.fulltext.projects 22208102
utb.fulltext.projects 21975074
utb.fulltext.projects 222201718002
utb.fulltext.faculty University Institute
utb.fulltext.ou Centre of Polymer Systems
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam