Publikace UTB
Repozitář publikační činnosti UTB

Iron-sepiolite high-performance magnetorheological polishing fluid with reduced sedimentation

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Iron-sepiolite high-performance magnetorheological polishing fluid with reduced sedimentation en
dc.contributor.author Milde, Radoslav
dc.contributor.author Moučka, Robert
dc.contributor.author Sedlačík, Michal
dc.contributor.author Pata, Vladimír
dc.relation.ispartof International Journal of Molecular Sciences
dc.identifier.issn 1661-6596 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1422-0067 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 23
utb.relation.issue 20
dc.type article
dc.language.iso en
dc.publisher MDPI
dc.identifier.doi 10.3390/ijms232012187
dc.relation.uri https://www.mdpi.com/1422-0067/23/20/12187
dc.relation.uri https://www.mdpi.com/1422-0067/23/20/12187/pdf?version=1665640512
dc.subject polishing en
dc.subject magnetorheology en
dc.subject sedimentation en
dc.subject slurry en
dc.subject clay en
dc.subject 3D texture en
dc.description.abstract A sedimentation-stable magnetorheological (MR) polishing slurry on the basis of ferrofluid, iron particles, Al2O3, and clay nanofiller in the form of sepiolite intended for MR polishing has been designed, prepared, and its polishing efficiency verified. Added clay substantially improved sedimentation stability of the slurry, decreasing its sedimentation rate to a quarter of its original value (1.8 to 0.45 mg s−1) while otherwise maintaining its good abrasive properties. The magnetisation curve measurement proved that designed slurry is soft magnetic material with no hysteresis, and its further suitability for MR polishing was confirmed by its magnetorheology namely in the quadratically increased yield stress due to the effect of applied magnetic field (0 to 600 kA m−1). The efficiency of the MR polishing process was tested on the flat samples of injection-moulded polyamide and verified by surface roughness/3D texture measurement. The resulting new composition of the MR polishing slurry exhibits a long-term stable system with a wide application window in the MR polishing process. © 2022 by the authors. en
utb.faculty Faculty of Technology
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1011207
utb.identifier.obdid 43883978
utb.identifier.scopus 2-s2.0-85140975124
utb.identifier.wok 000873346000001
utb.identifier.pubmed 36293044
utb.source J-wok
dc.date.accessioned 2022-11-29T07:49:19Z
dc.date.available 2022-11-29T07:49:19Z
dc.description.sponsorship Internal Grant Agency of Tomas Bata University in Zlin [IGA/FT/2022/007]; Ministry of Education, Youth and Sports of the Czech Republic [RP/CPS/2022/007]
dc.description.sponsorship IGA/FT/2022/007, RP/CPS/2022/007; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Department of Production Engineering
utb.ou Polymer Centre
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Milde, Radoslav
utb.contributor.internalauthor Moučka, Robert
utb.contributor.internalauthor Sedlačík, Michal
utb.contributor.internalauthor Pata, Vladimír
utb.fulltext.affiliation Radoslav Milde 1, Robert Moucka 2,3, Michal Sedlacik 1,3,* and Vladimir Pata 1 1 Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, 760 01 Zlin, Czech Republic 2 Polymer Centre, Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, 760 01 Zlin, Czech Republic 3 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, 760 01 Zlin, Czech Republic * Correspondence: [email protected]
utb.fulltext.dates Received: 30 June 2022 Revised: 7 October 2022 Accepted: 10 October 2022 Published: 13 October 2022
utb.fulltext.references 1. Xia, Z.B.; Fang, F.Z.; Ahearne, E.; Tao, M.R. Advances in polishing of optical freeform surfaces: A review. J. Mater. Proc. Technol. 2020, 286, 116828. [Google Scholar] [CrossRef] 2. Bica, I.; Liu, Y.D.; Choi, H.J. Physical characteristics of magnetorheological suspensions and their applications. J. Ind. Eng. Chem. 2013, 19, 394–406. [Google Scholar] [CrossRef] 3. Ronzova, A.; Sedlacik, M.; Cvek, M. Magnetorheological fluids based on core-shell carbonyl iron particles modified by various organosilanes: Synthesis, stability and performance. Soft Matter 2021, 17, 1299–1306. [Google Scholar] [CrossRef] 4. de Vicente, J.; Klingenberg, D.J.; Hidalgo-Alvarez, R. Magnetorheological fluids: A review. Soft Matter 2011, 7, 3701–3710. [Google Scholar] [CrossRef] 5. Miao, C.L.; Shen, R.; Wang, M.M.; Shafrir, S.N.; Yang, H.; Jacobs, S.D. Rheology of Aqueous Magnetorheological Fluid Using Dual Oxide-Coated Carbonyl Iron Particles. J. Am. Ceram. Soc. 2011, 94, 2386–2392. [Google Scholar] 6. Souza, A.M.; da Silva, E.J.; Ratay, J.; Yamaguchi, H. Magnetic field-assisted finishing processes: From bibliometric analysis to future trends. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 327. [Google Scholar] [CrossRef] 7. Xie, S.W.; Sun, Q.Q.; Ying, G.Y.; Guo, L.X.; Huang, Q.; Peng, Q.Y.; Xu, J.F. Ultra-precise surface processing of LYSO scintillator crystals for Positron Emission Tomography. Appl. Surf. Sci. 2019, 469, 573–581. [Google Scholar] [CrossRef] [PubMed] 8. Qian, C.; Tian, Y.B.; Fan, Z.H.; Sun, Z.G.; Ma, Z. Investigation on rheological characteristics of magnetorheological shear thickening fluids mixed with micro CBN abrasive particles. Smart Mater. Struct. 2022, 31, 095004. [Google Scholar] [CrossRef] 9. Guo, H.R.; Wu, Y.B. Ultrafine polishing of optical polymer with zirconia-coated carbonyl-iron-particle-based magnetic compound fluid slurry. Int. J. Adv. Manuf. Technol. 2016, 85, 253–261. [Google Scholar] [CrossRef] 10. Chen, Z.J.; Pan, J.S.; Yan, Q.S.; Huang, Z.L.; Zhang, F.L.; Chen, S.M. Study on the rheological and polishing properties of electromagnetic two-phase composite particles with abrasive characteristics. Smart Mater. Struct. 2022, 31, 045012. [Google Scholar] [CrossRef] 11. Ashtiani, M.; Hashemabadi, S.H.; Ghaffari, A. A review on the magnetorheological fluid preparation and stabilization. J. Magn. Magn. Mater. 2015, 374, 716–730. [Google Scholar] [CrossRef] 12. Cheng, H.B.; Zuo, L.; Song, J.H.; Zhang, Q.J.; Wereley, N.M. Magnetorheology and sedimentation behavior of an aqueous suspension of surface modified carbonyl iron particles. J. Appl. Phys. 2010, 107, 3. [Google Scholar] [CrossRef] 13. Lee, J.W.; Hong, K.P.; Kwon, S.H.; Choi, H.J.; Cho, M.W. Suspension Rheology and Magnetorheological Finishing Characteristics of Biopolymer-Coated Carbonyliron Particles. Ind. Eng. Chem. Res. 2017, 56, 2416–2424. [Google Scholar] [CrossRef] 14. Ubaidillah; Sutrisno, J.; Purwanto, A.; Mazlan, S.A. Recent Progress on Magnetorheological Solids: Materials, Fabrication, Testing, and Applications. Adv. Eng. Mater. 2015, 17, 563–597. [Google Scholar] [CrossRef] 15. Liu, J.B.; Li, X.Y.; Zhang, Y.F.; Tian, D.; Ye, M.H.; Wang, C. Predicting the Material Removal Rate (MRR) in surface Magnetorheological Finishing (MRF) based on the synergistic effect of pressure and shear stress. Appl. Surf. Sci. 2020, 504, 144492. [Google Scholar] [CrossRef] 16. Kumari, C.; Chak, S.K. A review on magnetically assisted abrasive finishing and their critical process parameters. Manuf. Rev. 2018, 5, 13. [Google Scholar] [CrossRef] 17. Bedi, T.S.; Singh, A.K. Magnetorheological methods for nanofinishing—A review. Part. Sci. Technol. 2016, 34, 412–422. [Google Scholar] [CrossRef] 18. Kumari, C.; Chak, S.K. Study on influential parameters of hybrid AFM processes: A review. Manuf. Rev. 2019, 6, 23. [Google Scholar] [CrossRef] 19. Plachy, T.; Kutalkova, E.; Sedlacik, M.; Vesel, A.; Masar, M.; Kuritka, I. Impact of corrosion process of carbonyl iron particles on magnetorheological behavior of their suspensions. J. Ind. Eng. Chem. 2018, 66, 362–369. [Google Scholar] [CrossRef] 20. Choi, H.J.; Zhang, W.L.; Kim, S.; Seo, Y. Core-Shell Structured Electro- and Magneto-Responsive Materials: Fabrication and Characteristics. Materials 2014, 7, 7460–7471. [Google Scholar] [CrossRef] 21. Kim, H.M.; Kang, S.H.; Choi, H.J. Polyaniline coated ZnFe2O4 microsphere and its electrorheological and magnetorheological response. Coll. Surf. A Physicochem. Eng. Asp. 2021, 626, 127079. [Google Scholar] [CrossRef] 22. Zhang, P.; Dong, Y.Z.; Choi, H.J.; Lee, C.H. Tribological and rheological tests of core-shell typed carbonyl iron/polystyrene particle-based magnetorheological fluid. J. Ind. Eng. Chem. 2018, 68, 342–349. [Google Scholar] [CrossRef] 23. Park, B.J.; Hong, M.K.; Choi, H.J. Atom transfer radical polymerized PMMA/magnetite nanocomposites and their magnetorheology. Coll. Polym. Sci. 2009, 287, 501–504. [Google Scholar] [CrossRef] 24. Jamari, S.K.M.; Nordin, N.A.; Ubaidillah; Aziz, S.A.A.; Nazmi, N.; Mazlan, S.A. Systematic Review on the Effects, Roles and Methods of Magnetic Particle Coatings in Magnetorheological Materials. Materials 2020, 13, 5317. [Google Scholar] [CrossRef] 25. Hajalilou, A.; Abouzari-Lotf, E.; Abbasi-Chianeh, V.; Shojaei, T.R.; Rezaie, E. Inclusion of octahedron-shaped ZnFe2O4 nanoparticles in combination with carbon dots into carbonyl iron based magnetorheological suspension as additive. J. Alloys Compd. 2018, 737, 536–548. [Google Scholar] [CrossRef] 26. Xu, J.H.; Li, J.Y.; Cao, J.G. Effects of fumed silica weight fraction on rheological properties of magnetorheological polishing fluids. Coll. Polym. Sci. 2018, 296, 1145–1156. [Google Scholar] [CrossRef] 27. Bai, Y.; Xue, D.L.; Zhang, X.J. Polishing performance of magnetorheological finishing with flocculated and deflocculated aqueous polishing fluid. Opt. Eng. 2019, 58, 025104. [Google Scholar] 28. Kutalkova, E.; Plachy, T.; Sedlacik, M. On the enhanced sedimentation stability and electrorheological performance of intelligent fluids based on sepiolite particles. J. Mol. Liquids 2020, 309, 113120. [Google Scholar] [CrossRef] 29. Marins, J.A.; Plachy, T.; Kuzhir, P. Iron-sepiolite magnetorheological fluids with improved performances. J. Rheol. 2019, 63, 125–139. [Google Scholar] 30. Lopez-Lopez, M.T.; Kuzhir, P.; Lacis, S.; Bossis, G.; Gonzalez-Caballero, F.; Duran, J.D.G. Magnetorheology for suspensions of solid particles dispersed in ferrofluids. J. Phys. Condens. Matter 2006, 18, S2803–S2813. [Google Scholar] [CrossRef] 31. Cho, M.S.; Choi, H.J.; Jhon, M.S. Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer 2005, 46, 11484–11488. [Google Scholar] [CrossRef] 32. Ginder, J.M.; Davis, L.C.; Elie, L.D. Rheology of magnetorheological fluids: Models and measurements. Int. J. Mod. Phys. B 1996, 10, 3293–3303. [Google Scholar] [CrossRef] 33. Roupec, J.; Berka, P.; Mazurek, I.; Strecker, Z.; Kubik, M.; Machacek, O.; Andani, M.T. A novel method for measurement of MR fluid sedimentation and its experimental verification. Smart Mater. Struct. 2017, 26, 13. [Google Scholar] [CrossRef] 34. Cvek, M.; Mrlik, M.; Moucka, R.; Sedlacik, M. A systematical study of the overall influence of carbon allotrope additives on performance, stability and redispersibility of magnetorheological fluids. Coll. Surf. A Physicochem. Eng. Asp. 2018, 543, 83–92. [Google Scholar] [CrossRef] 35. Zhuang, G.Z.; Zhang, Z.P.; Yang, H.; Tang, J.J. Structures and rheological properties of organo-sepiolite in oil-based drilling fluids. Appl. Clay Sci. 2018, 154, 43–51. [Google Scholar] 36. Hong, K.P.; Song, K.H.; Cho, M.W.; Kwon, S.H.; Choi, H.J. Magnetorheological properties and polishing characteristics of silica-coated carbonyl iron magnetorheological fluid. J. Intell. Mater. Syst. Struct. 2018, 29, 137–146. [Google Scholar] [CrossRef] 37. Sedlacik, M.; Pavlinek, V. A tensiometric study of magnetorheological suspensions’ stability. Rsc. Adv. 2014, 4, 58377–58385. [Google Scholar] [CrossRef] 38. Milde, R.; Bilek, O.; Sedlacik, M.; Kovarik, M. Construction of magnetorheological device for finishing of non-metallic materials. In Development of Materials Science in Research and Education; Behulova, M., Kozisek, Z., Potucek, Z., Eds.; IOP Publishing Ltd.: Bristol, UK, 2020; Volume 726. [Google Scholar] 39. Guo, C.; Liu, J.; Li, X.H.; Yang, S.Q. Effect of cavitation bubble on the dispersion of magnetorheological polishing fluid under ultrasonic preparation. Ultrason. Sonochem. 2021, 79, 105782. [Google Scholar] [CrossRef] [PubMed]
utb.fulltext.sponsorship The authors wish to thank the Internal Grant Agency of Tomas Bata University in Zlín [IGA/FT/2022/007] for its financial support. The authors R.M. and M.S. gratefully acknowledge project DKRVO [RP/CPS/2022/007] supported by the Ministry of Education, Youth and Sports of the Czech Republic.
utb.wos.affiliation [Milde, Radoslav; Sedlacik, Michal; Pata, Vladimir] Tomas Bata Univ Zlin, Fac Technol, Dept Prod Engn, Vavreckova 275, Zlin 76001, Czech Republic; [Moucka, Robert] Tomas Bata Univ Zlin, Fac Technol, Polymer Ctr, Vavreckova 275, Zlin 76001, Czech Republic; [Moucka, Robert; Sedlacik, Michal] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Trida T Bati 5678, Zlin 76001, Czech Republic
utb.scopus.affiliation Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, Zlin, 760 01, Czech Republic; Polymer Centre, Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, Zlin, 760 01, Czech Republic; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, Zlin, 760 01, Czech Republic
utb.fulltext.projects IGA/FT/2022/007
utb.fulltext.projects RP/CPS/2022/007
utb.fulltext.faculty Faculty of Technology
utb.fulltext.faculty Faculty of Technology
utb.fulltext.faculty University Institute
utb.fulltext.faculty Faculty of Technology
utb.fulltext.faculty University Institute
utb.fulltext.faculty Faculty of Technology
utb.fulltext.ou Department of Production Engineering
utb.fulltext.ou Polymer Centre
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Department of Production Engineering
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Department of Production Engineering
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International