Kontaktujte nás | Jazyk: čeština English
dc.title | Evolutionary algorithms as a tool for shielding design | en |
dc.contributor.author | Kovář, Stanislav | |
dc.contributor.author | Kavánková, Iva | |
dc.contributor.author | Renzler, Michael | |
dc.contributor.author | Valouch, Jan | |
dc.contributor.author | Kadavý, Tomáš | |
dc.contributor.author | Mair, Dominik | |
dc.relation.ispartof | 2022 IEEE International Symposium on Electromagnetic Compatibility and Signal/Power Integrity, EMCSI 2022 | |
dc.identifier.issn | 2158-110X Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 978-1-6654-0929-2 | |
dc.date.issued | 2022 | |
dc.citation.spage | 575 | |
dc.citation.epage | 579 | |
dc.event.title | 2022 IEEE International Symposium on Electromagnetic Compatibility and Signal/Power Integrity, EMCSI 2022 | |
dc.event.location | Spokane, WA | |
utb.event.state-en | United States | |
utb.event.state-cs | Spojené státy americké | |
dc.event.sdate | 2022-08-01 | |
dc.event.edate | 2022-08-05 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.identifier.doi | 10.1109/EMCSI39492.2022.9889487 | |
dc.relation.uri | https://ieeexplore.ieee.org/document/9889487 | |
dc.relation.uri | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9889487 | |
dc.subject | shielding effectiveness | en |
dc.subject | planar transparent material | en |
dc.subject | voxels | en |
dc.subject | evolutionary algorithms | en |
dc.description.abstract | The paper deals with the shielding enclosure design using evolutionary algorithms without predetermined conditions. The designed shield consists of an array of elements that represent conductive or non-conductive parts. The expected output is to design a shield with sufficient balance between shielding effectiveness and transparency in systems that need an optical line of sight. The wide frequency transparent shielding design is a complex task that researchers so far mostly solved by composite polymers. The authors use a different approach using traditional conductive material and element folding technology. Element assembly is performed by an evolutionary algorithm that decides the properties of the material used and creates the optimal structure to achieve the desired results. The paper describes the design concept for planar shielding with metaheuristics and the preliminary results. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011199 | |
utb.identifier.obdid | 43883691 | |
utb.identifier.scopus | 2-s2.0-85140832238 | |
utb.identifier.wok | 000975927600120 | |
utb.source | d-scopus | |
dc.date.accessioned | 2022-11-29T07:49:18Z | |
dc.date.available | 2022-11-29T07:49:18Z | |
dc.description.sponsorship | CZ.02.2.69/0.0/0.0/16028/0006243; Univerzita Tomáše Bati ve Zlíně: IGA/CebiaTech/2022/004, IGA/FAI/2022/001 | |
dc.description.sponsorship | Internal Grant Agency of Tomas Bata University [IGA/FAI/2022/001, IGA/CebiaTech/2022/004]; TBU Research and Development Capacity Development project in Zlin [CZ.02.2.69/0.0/0.0/16028/0006243] | |
utb.contributor.internalauthor | Kovář, Stanislav | |
utb.contributor.internalauthor | Kavánková, Iva | |
utb.contributor.internalauthor | Valouch, Jan | |
utb.contributor.internalauthor | Kadavý, Tomáš | |
utb.fulltext.affiliation | Stanislav Kovar Faculty of Applied Informatics Tomas Bata University in Zlín Zlín, Czech Republic [email protected] Jan Valouch Faculty of Applied Informatics Tomas Bata University in Zlín Zlín, Czech Republic [email protected] Iva Kavankova Faculty of Applied Informatics Tomas Bata University in Zlín Zlín, Czech Republic [email protected] Tomas Kadavy Faculty of Applied Informatics Tomas Bata University in Zlín Zlín, Czech Republic [email protected] Michael Renzler Department of Mechatronics University of Innsbruck Innsbruck, Austria [email protected] Dominik Mair Department of Mechatronics University of Innsbruck Innsbruck, Austria [email protected] | |
utb.fulltext.dates | Date Added to IEEE Xplore: 26 September 2022 | |
utb.fulltext.references | [1] M. Gonzalez, J. Pozuelo, and J. Baselga, “Electromagnetic shielding ´materials in ghz range,” The Chemical Record, vol. 18, no. 7-8, pp. 1000–1009, 2018. [2] D. D. Chung, “Materials for electromagnetic interference shielding,” Materials Chemistry and Physics, p. 123587, 2020. [3] A. Iqbal, P. Sambyal, and C. M. Koo, “2d mxenes for electromagnetic shielding: a review,” Advanced Functional Materials, vol. 30, no. 47, p. 2000883, 2020. [4] V. Shukla, “Review of electromagnetic interference shielding materials fabricated by iron ingredients,” Nanoscale Advances, vol. 1, no. 5, pp. 1640–1671, 2019. [5] “Ieee standard method for measuring the shielding effectiveness of enclosures and boxes having all dimensions between 0.1 m and 2 m,” IEEE Std 299.1-2013, pp. 1–96, 2014. [6] T. Kadavy, S. Kovar, M. Pluhacek, A. Viktorin, and R. Senkerik, “Evolutionary algorithms applied to a shielding enclosure design,” in Artificial Intelligence and Soft Computing, L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz, R. Tadeusiewicz, and J. M. Zurada, Eds. Cham: Springer International Publishing, 2019, pp. 445–455. [7] T. Kadavy, S. Kovar, R. Senkerik, and M. Pluhacek, “On the design of a front-face grid for shielding enclosure using evolutionary computations,” in 2019 Photonics Electromagnetics Research Symposium - Fall (PIERS - Fall), 2019, pp. 443–450. [8] S. Kovář, J. Valouch, T. Kadavy, M. Pospíšílík, and M. Adámek, “Enclosure shielding effectiveness calculation using shade algorithm,” in 2018 19th International Scientific Conference on Electric Power Engineering (EPE), 2018, pp. 1–4. [9] D. Mair, M. Renzler, A. Pfeifhofer, and T. Ußmüller, “Evolutionary optimization of asymmetrical pixelated antennas employing shifted cross shaped elements for uhf rfid,” Electronics, vol. 9, no. 11, 2020. [Online]. Available: https://www.mdpi.com/2079-9292/9/11/1856 [10] Z. Liang, Z. Zhao, M. Pu, J. Luo, X. Xie, Y. Wang, Y. Guo, X. Ma, and X. Luo, “Metallic nanomesh for high-performance transparent electromagnetic shielding,” Optical Materials Express, vol. 10, no. 3, pp. 796–806, 2020. [11] X. Zhang, Y. Zhong, and Y. Yan, “Electrical, mechanical, and electromagnetic shielding properties of silver nanowire-based transparent conductive films,” physica status solidi (a), vol. 215, no. 14, p. 1800014, 2018. [12] J. Gu, S. Hu, H. Ji, H. Feng, W. Zhao, J. Wei, and M. Li, “Multi-layer silver nanowire/polyethylene terephthalate mesh structure for highly efficient transparent electromagnetic interference shielding,” Nanotechnology, vol. 31, no. 18, p. 185303, 2020. [13] A. Voronin, Y. Fadeev, I. Govorun, I. Podshivalov, M. Simunin, I. Tambasov, D. Karpova, T. Smolyarova, A. Lukyanenko, A. Karacharov et al., “Cu–ag and ni–ag meshes based on cracked template as efficient transparent electromagnetic shielding coating with excellent mechanical performance,” Journal of Materials Science, pp. 1–22, 2021. [14] Y. Xia, J. Fang, P. Li, B. Zhang, H. Yao, J. Chen, J. Ding, and J. Ouyang, “Solution-processed highly superparamagnetic and conductive pedot: Pss/fe3o4 nanocomposite films with high transparency and high mechanical flexibility,” ACS applied materials & interfaces, vol. 9, no. 22, pp. 19 001–19 010, 2017. [15] D.-H. Kim, Y. Kim, and J.-W. Kim, “Transparent and flexible film for shielding electromagnetic interference,” Materials & Design, vol. 89, pp. 703–707, 2016. [16] S. Kim, J.-S. Oh, M.-G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J.-H. Lee, Y. Lee et al., “Electromagnetic interference (emi) transparent shielding of reduced graphene oxide (rgo) interleaved structure fabricated by electrophoretic deposition,” ACS applied materials & interfaces, vol. 6, no. 20, pp. 17 647–17 653, 2014. [17] L.-C. Jia, D.-X. Yan, X. Liu, R. Ma, H.-Y. Wu, and Z.-M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS applied materials & interfaces, vol. 10, no. 14, pp. 11 941–11 949, 2018. [18] L. Ma, Z. Lu, J. Tan, J. Liu, X. Ding, N. Black, T. Li, J. Gallop, and L. Hao, “Transparent conducting graphene hybrid films to improve electromagnetic interference (emi) shielding performance of graphene,” ACS applied materials & interfaces, vol. 9, no. 39, pp. 34 221–34 229, 2017. [19] P. Mair, V. S. Goettgens, T. Rainer, N. Weinberger, I. LetofskyPapst, S. Mitsche, and G. Leichtfried, “Laser powder bed fusion of nano-cab6 decorated 2024 aluminum alloy,” Journal of Alloys and Compounds, vol. 863, p. 158714, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925838821001213 [20] P. Mair, L. Kaserer, J. Braun, N. Weinberger, I. LetofskyPapst, and G. Leichtfried, “Microstructure and mechanical properties of a tib2-modified al–cu alloy processed by laser powder-bed fusion,” Materials Science and Engineering: A, vol. 799, p. 140209, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0921509320312740 | |
utb.fulltext.sponsorship | The work was funded with the support of the Internal Grant Agency of Tomas Bata University under project No. IGA/FAI/2022/001, IGA/CebiaTech/2022/004, and the TBU Research and Development Capacity Development project in Zlín CZ.02.2.69/0.0/0.0/16028/0006243. | |
utb.wos.affiliation | [Kovar, Stanislav; Kavankova, Iva; Valouch, Jan; Kadavy, Tomas] Tomas Bata Univ Zlin, Fac Appl Informat, Zlin, Czech Republic; [Renzler, Michael; Mair, Dominik] Univ Innsbruck, Dept Mechatron, Innsbruck, Austria | |
utb.scopus.affiliation | Tomas Bata University in Zlín, Faculty of Applied Informatics, Zlín, Czech Republic; University of Innsbruck, Department of Mechatronics, Innsbruck, Austria | |
utb.fulltext.projects | IGA/FAI/2022/001 | |
utb.fulltext.projects | IGA/CebiaTech/2022/004 | |
utb.fulltext.projects | CZ.02.2.69/0.0/0.0/16028/0006243 | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.ou | - | |
utb.fulltext.ou | - | |
utb.fulltext.ou | - | |
utb.fulltext.ou | - |