Kontaktujte nás | Jazyk: čeština English
dc.title | Conducting polypyrrole silicotungstate deposited on macroporous melamine sponge for electromagnetic interference shielding | en |
dc.contributor.author | Stejskal, Jaroslav | |
dc.contributor.author | Jurča, Marek | |
dc.contributor.author | Vilčáková, Jarmila | |
dc.contributor.author | Trchová, Miroslava | |
dc.contributor.author | Kolská, Zdeňka | |
dc.contributor.author | Prokeš, Jan | |
dc.relation.ispartof | Materials Chemistry and Physics | |
dc.identifier.issn | 0254-0584 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.issn | 1879-3312 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2023 | |
utb.relation.volume | 293 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Elsevier Ltd | |
dc.identifier.doi | 10.1016/j.matchemphys.2022.126907 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0254058422012135 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0254058422012135/pdfft?md5=daf58b3f08e4c6f62946e87159f05949&pid=1-s2.0-S0254058422012135-main.pdf | |
dc.subject | heteropolyacid | en |
dc.subject | melamine sponge | en |
dc.subject | polypyrrole nanotubes | en |
dc.subject | silicotungstic acid | en |
dc.subject | electromagnetic interference shielding | en |
dc.description.abstract | Macroporous melamine/formaldehyde sponge was coated in situ during the oxidation of pyrrole with iron(III) chloride hexahydrate in aqueous medium. The reaction mixture contained a heteropolyacid, silicotungstic acid, which protonated polypyrrole. Polypyrrole/silicotungstate deposits were prepared either in globular form or as nanotubes. The resulting hybrid composites thus combine an organic conducting polymer with inorganic component known, e.g., for its proton conductivity and electrocatalytic activity. The specific surface area of all materials was of the order of tens m2g−1. The molecular structure is discussed on the basis of FTIR and Raman spectra. The resistivity of the sponges was recorded as a function of compression to 10 MPa and it decreased from the order of 10 Ω cm to 0.1 Ω cm. The sponges were tested in electromagnetic interference shielding and absorbed over 80% of 9 GHz radiation frequency. The shielding is based mainly on the radiation absorption efficiency, −8.2 dB for globular polypyrrole and −13.1 dB for nanotubes, afforded by silicotungstic component. Hybrid composite sponges were subsequently carbonized at 650 °C in inert atmosphere when they converted to a sponge-like macroporous carbons enriched with nitrogen atoms. Their resistivity increased by two orders of magnitude after this process. The absorption of electromagnetic radiation, however, fell below 10%. Original and carbonized hybrid sponges may be of interest in the construction of macroporous electrodes. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1011190 | |
utb.identifier.obdid | 43884637 | |
utb.identifier.scopus | 2-s2.0-85140141870 | |
utb.identifier.wok | 000888472500004 | |
utb.identifier.coden | MCHPD | |
utb.source | j-scopus | |
dc.date.accessioned | 2022-11-29T07:49:17Z | |
dc.date.available | 2022-11-29T07:49:17Z | |
dc.description.sponsorship | RP/CPS/2022/005; Technology Agency of the Czech Republic, TACR: TH71020006, TK03030157; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; Grantová Agentura České Republiky, GA ČR: 22-25734S | |
dc.description.sponsorship | Ministry of Education, Youth and Sports of the Czech Republic (DKRVO) [TK03030157]; Technology Agency of the Czech Republic [22-25734S]; Czech Science Foundation; [DKRVO RP/CPS/2022/005]; [TH71020006] | |
utb.contributor.internalauthor | Stejskal, Jaroslav | |
utb.contributor.internalauthor | Jurča, Marek | |
utb.contributor.internalauthor | Vilčáková, Jarmila | |
utb.fulltext.affiliation | Jaroslav Stejskal a,*, Marek Jurča a, Jarmila Vilčáková a, Miroslava Trchová b, Zdeňka Kolská c, Jan Prokeš d a University Institute, Tomas Bata University in Zlin, 760 01, Zlin, Czech Republic b University of Chemistry and Technology, Prague, 166 28, Prague 6, Czech Republic c J.E. Purkyně University, Faculty of Science, 400 96, Ústí Nad Labem, Czech Republic d Charles University, Faculty of Mathematics and Physics, 180 00, Prague 8, Czech Republic * Corresponding author. E-mail address: [email protected] (J. Stejskal). Author information Jaroslav Stejskal – University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; and University of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic; orcid. org/0000-0001-9350-9647; Email: [email protected]. | |
utb.fulltext.dates | Received 8 August 2022 Received in revised form 9 October 2022 Accepted 11 October 2022 Available online 14 October 2022 | |
utb.fulltext.references | [1] S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline, Prog. Polym. Sci. 34 (2009) 783–810, https://doi.org/10.1016/j.progpolymsci.2009.04.003. [2] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, Science 332 (2011) 443–447, https://doi.org/10.1126/science.1200832. [3] J. Stejskal, M. Trchová, P. Bober, P. Humpolíček, V. Kašpárková, I. Sapurina, M. A. Shishov, M. Varga, Conducting polymers: polyaniline, in: Encyclopedia of Polymer Science and Technology, Wiley online library, 2015, https://doi.org/10.1002/0471440264.pst640. [4] J. Stejskal J, Conducting polymers are not just conducting: a perspective for emerging technology, Polym. Int. 69 (2020) 662–664, https://doi.org/10.1002/pi.5947. [5] Z. Jin, Y.X. Su, Y.X. Duan, Development of a polyaniline-based optical ammonia sensor, Sens. Actuators B: Chem. 72 (2001) 75–79, https://doi.org/10.1016/S0925-4005[00]00636-5. [6] G.G. Wen, X.Y. Zhang, Y.H. Yan, Y.Q. Huang, S. Lin, Y. Zhu, Z.P. Wang, B.H. Zhou, S.H. Yang, J. Liu, Tailoring polypyrrole-based Janus aerogel for efficient and stable solar steam generation, Desalination 516 (2021), 115228, https://doi.org/10.1016/j.desal.2021.115228. [7] P. Zarrintaj, M.K. Yazdi, H. Vahabi, P.N. Moghadam, M.R. Saeb, Towards advanced flame retardant organic coatings: expecting a new function from polyaniline, Prog. Org. Coating 130 (2019) 144–148, https://doi.org/10.1016/j.porgcoat.2019.01.053. [8] J. Stejskal, Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition, Chem. Pap. 74 (2020) 1–54, https://doi.org/10.1007/s11696-019-00982-9. [9] J. Stejskal, M. Pekárek, M. Trchová, Z. Kolská, Adsorption of organic dyes on macroporous melamine sponge incorporating conducting polymer nanotubes, J. Appl. Polym. Sci. 139 (2022), 52156, https://doi.org/10.1002/app.52156. [10] A. Popa, N. Ples¸u, V. Sasca, E.E. Kiš, R. Marinković Nedučin, Physicochemical features of polyaniline supported heteropolyacids, J. Optoelectron. Adv. Mater. 8 (2006) 1944–1950 (n/a). [11] J. Stejskal, J. Prokeš, M. Trchová, Reprotonation of polyaniline: a route to various conducting polymer materials, React. Funct. Polym. 68 (2008) 1355–1361, https://doi.org/10.1016/j.reactfunctpolym.2008.06.012. [12] N. Mizuno, M. Misono, Heteropolyacid catalysts, Curr. Opin. Solid State Mater. Sci. 2 (1997) 84–89, https://doi.org/10.1016/S1359-0286[97]80109-X. [13] B. Rausch, M.D. Symes, G. Chisholm, L. Cronin, Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting, Science 345 (2014) 1326–1330, https://doi.org/10.1126/science.1257443. [14] J. Stejskal, M. Trchová, P. Holler, I. Sapurina, J. Prokeš, The influence of tungsten compounds on the synthesis and properties of polyaniline, Polym. Int. 54 (2005) 1606–1612, https://doi.org/10.1002/pi.1888. [15] H.Y. Ma, Y.Q. Luo, S.X. Yang, Y.W. Li, F. Cao, J. Gong, Synthesis of aligned polyaniline belts by interfacial control approach, J. Phys. Chem. C 115 (2011) 12048–12053, https://doi.org/10.1021/jp201411y. [16] K. Pielichowski, M. Hasik, Thermal properties of new catalysts based on heteropolyanion-doped polyaniline, Synth. Met. 89 (1997) 199–202, https://doi.org/10.1016/S0379-6779[97]81218-0. [17] L.Y. Qu, R.Q. Lu, J. Peng, Y.G. Chen, Z.M. Dai, H3PW11MoO40.2H2O protonated polyaniline – synthesis, characterization and catalytic conversion of isopropanol, Synth. Met. 84 (1997) 135–136, https://doi.org/10.1016/S0379-6779[97]80682-0. [18] Y.Z. Gao, J.A. Seyed, H.B. Liu, X.K. Meng, Anti-corrosive performance of electropolymerized phosphomolybdic acid doped PANI coating on 304SS, Appl. Surf. Sci. 360 (2016) 389–397, https://doi.org/10.1016/j.apsusc.2015.11.029. [19] A.A. Khan, U. Baig, K. Khalid, Electrically conductive polyaniline-titanium(IV) molybdophosphate cation exchange nanocomposite: synthesis, characterization and alcohol vapour sensing properties, J. Ind. Eng. Chem. 19 (2013) 1226–1233, https://doi.org/10.1016/j.jiec.2012.12.022. [20] O.Yu. Posudievsky, Ya.I. Kurys, V.D. Pokhodenko, 1,2-Phosphomolibdic acid doped polyaniline–V2O5 composite, Synth. Met. 144 (2004) 107–111, https://doi.org/10.1016/j.synthmet.2004.02.009. [21] M.Y. Zhu, X.L. Gao, G.Q. Luo, B. Dai, A novel method for the synthesis of phosphomolybdic acid-modified Pd/C catalysts for oxygen reduction reaction, J. Power Sources 225 (2013) 27–33, https://doi.org/10.1016/j.powsour.2012.10.023. [22] Z.M. Cui, C.X. Guo, W.Y. Yuan, C.M. Li, In situ synthesized heteropolyacid/ polyaniline/graphene nanocomposites to simultaneously boost both double layerand pseudo-capacitance for supercapacitors, Phys. Chem. Chem. Phys. 14 (2012) 12823–12828, https://doi.org/10.1039/c2cp42022h. [23] S.Q. Liu, X. Fu, J.H. Dai, Z.B. Liu, L.F. Zhu, C.W. Hu, One-pot synthesis of 2,5-diformylfuran from fructose by bifunctional polyaniline-supported heteropolyacid hybrid catalysts, Catalysts 9 (2019) 445, https://doi.org/10.3390/catal9050445. [24] H. Salavati, N. Rasouli, Preparation, characterization and heterogeneous catalytic activity of heteropolyanion/polyaniline composites, Appl. Surf. Sci. 257 (2011) 4532–4538, https://doi.org/10.1016/j.apsusc.2010.10.052. [25] D.G. Shchukin, D.V. Sviridov, Highly efficient generation of H2O2 at composite polyaniline/heteropolyanion electrodes: effect of heteropolyanion structure on H2O2 yield, Electrochem. Commun. 4 (2002) 402–405, https://doi.org/10.1016/S1388-2481[02]00327-2. [26] M.M. Rahman, A. Khan, H.M. Marwani, A.M. Asiri, Hydrazine sensor based on silver nanoparticle-decorated polyaniline tungstophosphate nanocomposite for use in environmental remediation, Microchem. Acta 183 (2016) 1787–1796, https://doi.org/10.1007/s00604-016-1809-4. [27] P. Chithra Lekha, S. Subramanian, J. Philip, D. Pathinettam Padiyan, Interfacially polymerized polyaniline/dodecatungstophosphoric acid nanocomposites: enhancement of conductivity and humidity sensing, Physica B 405 (2010) 4313–4319, https://doi.org/10.1016/j.physb.2010.07.033. [28] M. Ammam, E.B. Easton, Advanced NOx gas sensing based on novel hybrid organic–inorganic semiconducting nanomaterial formed between pyrrole and Dawson type polyoxoanion [P2Mo18O62]6–, J. Mater. Chem. 21 (2011) 7886–7891, https://doi.org/10.1039/c1jm11244a. [29] E. Hatami, N. Ashraf, M.H. Arbab-Zavar, Construction of beta-cyclodextrin phosphomolybdate grafted polypyrrole composite: application as a disposable electrochemical sensor for detection of polyparaben, Microchem. J. 168 (2021), 106451, https://doi.org/10.1016/j.microc.2021.106451. [30] G.M. Suppes, B.A. Deore, M.S. Freund, Porous conducting polymer/heteropolyoxometalate hybrid material for electrochemical supercapacitor applications, Langmuir 24 (2008) 1064–1069, https://doi.org/10.1021/la02837j. [31] R. Stephanie, S.J. Patil, N.R. Chodankar, Y.S. Huh, Y.K. Han, T. Park, All redoxactive 2D MXene and 0D phosphomolybdic acid nanoclusters-anchored polypyrrole nanotubes for high-performance aqueous hybrid supercapacitors, Batter. Supercap. 5 (2022) 108, https://doi.org/10.1002/batt.202200108. [32] L.M. Abrantes, C.M. Cordas, E. Vieil, EQCM study of polypyrrole modified electrodes doped with Keggin-type heteropolyanion for cation detection, Electrochim. Acta 47 (2002) 1481–1487, https://doi.org/10.1016/S0013-4686[01]00859-3. [33] A.M. White, R.C.T. Slade, Polymer electrodes doped with heteropolymetallates and their use within solid-state supercapacitors, Synth. Met. 139 (2003) 123–131, https://doi.org/10.1016/S0379-6779[03]00039-0. [34] J. Bonastre, P. Garcés, F. Huerta, C. Quijada, L.G. Andión, F. Cases, Electrochemical study of polypyrrole/PW12O34–0 coatings on carbon steel electrodes in chloride aqueous solutions, Corrosion Sci. 48 (2006) 1122–1136, https://doi.org/10.1016/j.corsci.2005.05.004. [35] Z. Zondaka, A. Keskula, T. Tamm, R. Kiefer, Polypyrrole linear actuation tuned by phosphotungstic acid, Sens. Actuators B: Chem. 247 (2017) 742–748, https://doi.org/10.1016/j.snb.2017.03.061. [36] J. Molina, A.I. del Río, F. Cases, Chemical and electrochemical polymerization of pyrrole on polyester textiles in presence of phosphotungstic acid, Eur. Polym. J. 44 (2008) 2087–2098, https://doi.org/10.1016/j.eurpolymj.2008.04.007. [37] J. Molina, J. Fernández, A.J. del Río, J. Bonastre, F. Cases, Chemical, electrical and electrochemical characterization of hybrid organic/inorganic polypyrrole/PW12O34–0 coating deposited on polyester fabrics, Appl. Surf. Sci. 257 (2011) 10056–10064, https://doi.org/10.1016/j.apsusc.2011.06.140. [38] J. Molina, F.R. Oliveira, A.P. Souto, M.F. Esteves, J. Bonastre, F. Cases, Enhanced adhesion of polypyrrole/PW12O34–0 hybrid coatings on polyester fabrics, J. Appl. Polym. Sci. 129 (2013) 422–433, https://doi.org/10.1002/app.38652. [39] X.L. Wang, Y.J. Tang, W. Huang, C.H. Liu, L.Z. Dong, S.L. Li, Y.Q. Lan, Efficient electrocatalyst for the hydrogen evolution reaction derived from polyoxotungstate/polypyrrole/graphene, ChemSusChem 10 (2017) 2402–2407, https://doi.org/10.1002/cssc.201700276. [40] I. Sapurina, S. Fedorova, J. Stejskal, Surface polymerization and precipitation polymerization of aniline in the presence of sodium tungstate, Langmuir 19 (2003) 7413–7416, https://doi.org/10.1021/la034667l. [41] G. ćirić Marjanović, I. Pašti, N. Gavrilov, A. Janosević, S. Mentus, Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials, Chem. Pap. 67 (2013) 781–813, https://doi.org/10.2478/s11696-013-0312-1. [42] J. Stejskal, J. Vilčáková, M. Jurča, H. Fei, M. Trchová, J. Prokeš, I. Křivka, Polypyrrole-coated melamine sponge as a precursor for conducting macroporous nitrogen-containing carbons, Coatings 12 (2022) 324, https://doi.org/10.3390/coatings12030324. [43] K.A. Milakin, U. Acharya, J. Hromádková, M. Trchová, J. Stejskal, Nitrogencontaining carbon enriched with tungsten atoms prepared by carbonization of polyaniline, Chem. Pap. 75 (2021) 5153–5161, https://doi.org/10.1007/s11696-021-01582-2. [44] J. Stejskal, I. Sapurina, J. Vilčáková, M. Jurča, M. Trchová, Z. Kolská, J. Prokeš, I. Křivka, One-pot preparation of conducting melamine/polypyrrole/magnetite ferrosponge, ACS Appl. Polym. Mater. 3 (2021) 1107–1115, https://doi.org/10.1021/acsapm.0c01331. [45] J. Stejskal, M. Trchová, Conducting polypyrrole nanotubes: a review, Chem. Pap. 72 (2018) 1563–1595, https://doi.org/10.1007/s11696-018-0394-x. [46] J. Stejskal, M. Kohl, M. Trchová, Z. Kolská, M. Pekárek, I. Křivka, J. Prokeš, Conversion of conducting polypyrrole nanostructures to nitrogen-containing carbons and its impact on the adsorption of organic dye, Mater. Adv. 2 (2021) 706–717, https://doi.org/10.1039/d0ma00730g. [47] Y.K. Li, P.Y. Du, Z.X. Wang, H.D. Huang, L.C. Jia, Aramid nanofiber-induced assembly of graphene nanosheets toward highly thermostable and freestanding films for electromagnetic interference shielding, Composites A: Appl. Sci. Manufact. 160 (2022), 107063, https://doi.org/10.1016/j.compositesa.2022.107063. [48] S.Q. Yi, H. Sun, K.K. Zou, J. Li, L.C. Jia, Y.F. Ji, CNT-assisted design of stable liquid metal droplets for flexible multifunctional composites, Composites B: Eng. 239 (2022), 109961, https://doi.org/10.1016/j.compositesb.2022.109961. [49] K. Tian, D.R. Hu, Q. Wei, Q. Fu, H. Deng, Recent progress on multifunctional electromagnetic interference shielding polymer composites, J. Mater. Sci. Technol. 134 (2023) 106–131, https://doi.org/10.1016/j.jmst.2022.06.031. [50] F.W. Huang, Q.C. Yang, L.C. Jia, D.X. Yan, Z.M. Li, Aramid nanofiber assisted preparation of self-standing liquid metal-based films for ultrahigh electromagnetic interference shielding, Chem. Eng. J. 426 (2021), 131288, https://doi.org/10.1016/j.cej.2021.131288. [51] L.C. Jia, R.P. Nie, L. Xu, D.X. Yan, J. Lei, Z.M. Li, Carbonized cotton textile with hierarchical structure for superhydrophobicity and efficient electromagnetic interference shielding, Composites A: Appl. Sci. Manufact. 149 (2021), 106555, https://doi.org/10.1016/j.compositesa.2021.106555. [52] L.P. Wu, F. Wu, Q.Y. Sun, J.Y. Shi, A. Xia, X.F. Zhu, W. Dong, A TTF-TCNQ complex: an organic charge transfer system with extraordinary electromagnetic response, J. Mater. Chem. C 9 (2021) 3316–3323, https://doi.org/10.1039/d0tc05230b. [53] S. Geetha, K.K.S. Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, EMI shielding: methods and materials – a review, J. Appl. Polym. Sci. 112 (2009) 2073–2086, https://doi.org/10.1002/app.29812. [54] D.D.L. Chung, Materials for electromagnetic interference shielding, J. Mater. Eng. Perform. 9 (2000) 350–354, https://doi.org/10.1361/105994900770346042. [55] A.M. Xie, W.C. Jiang, K. Zhang, M.X. Sun, M.Y. Wang, Chiral induced synthesis of helical polypyrrole (PPy) nano-structures: a lightweight and high-performance material against electromagnetic pollution, J. Mater. Chem. 5 (2017) 2175–2181, https://doi.org/10.1039/c6tc05057c. [56] Y. Wang, Y.C. Du, X. Ping, R. Qiang, X.J. Han, Recent advances in conjugated polymer-based microwave absorbing materials, Polymers 9 (2017) 29, https://doi.org/10.3390/polym9010029. [57] R. Moučka, M. Sedlačík, H. Kasparyan, J. Prokeš, M. Trchová, F. Hassouna, D. Kopecký, One-dimensional nanostructures of polypyrrole for shielding of electromagnetic interference in the microwave region, Int. J. Mol. Sci. 21 (2020) 8814, https://doi.org/10.3390/ijms21228814. | |
utb.fulltext.sponsorship | The authors thank the Ministry of Education, Youth and Sports of the Czech Republic (DKRVO RP/CPS/2022/005), the Technology Agency of the Czech Republic (Epsilon TH71020006 and Theta TK03030157), and the Czech Science Foundation (22-25734S) for the financial support. The help of the Institute of Macromolecular Chemistry CAS in Prague with experiments is also acknowledged. | |
utb.wos.affiliation | [Stejskal, Jaroslav; Jurca, Marek; Vilcakova, Jarmila] Tomas Bata Univ Zlin, Univ Inst, Zlin 76001, Czech Republic; [Trchova, Miroslava] Univ Chem & Technol, Prague 16628 6, Czech Republic; [Kolska, Zdenka] Univ JE Purkyne, Fac Sci, Usti Nad Labem 40096, Czech Republic; [Prokes, Jan] Charles Univ Prague, Fac Math & Phys, Prague 18000 8, Czech Republic | |
utb.scopus.affiliation | University Institute, Tomas Bata University in Zlin, Zlin, 760 01, Czech Republic; University of Chemistry and Technology, Prague, Prague 6, 166 28, Czech Republic; J.E. Purkyně University, Faculty of Science, Ústí Nad Labem, 400 96, Czech Republic; Charles University, Faculty of Mathematics and Physics, Prague 8, 180 00, Czech Republic | |
utb.fulltext.projects | DKRVO RP/CPS/2022/005 | |
utb.fulltext.projects | Epsilon TH71020006 | |
utb.fulltext.projects | Theta TK03030157 | |
utb.fulltext.projects | 22-25734S | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.ou | - |