Publikace UTB
Repozitář publikační činnosti UTB

Stable magnetorheological fluids containing bidisperse fillers with compact/mesoporous silica coatings

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Stable magnetorheological fluids containing bidisperse fillers with compact/mesoporous silica coatings en
dc.contributor.author Cvek, Martin
dc.contributor.author Jamatia, Thaiskang
dc.contributor.author Šuly, Pavol
dc.contributor.author Urbánek, Michal
dc.contributor.author Torres-Mendieta, Rafael
dc.relation.ispartof International Journal of Molecular Sciences
dc.identifier.issn 1661-6596 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1422-0067 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 23
utb.relation.issue 19
dc.type article
dc.language.iso en
dc.publisher MDPI
dc.identifier.doi 10.3390/ijms231911044
dc.relation.uri https://www.mdpi.com/1422-0067/23/19/11044
dc.relation.uri https://www.mdpi.com/1422-0067/23/19/11044/htm
dc.subject smart materials en
dc.subject magnetorheology en
dc.subject surface texture en
dc.subject mesoporous silica en
dc.subject sedimentation en
dc.subject suspensions en
dc.subject coating en
dc.subject nano-layer en
dc.description.abstract A drawback of magnetorheological fluids is low kinetic stability, which severely limits their practical utilization. This paper describes the suppression of sedimentation through a combination of bidispersal and coating techniques. A magnetic, sub-micro additive was fabricated and sequentially coated with organosilanes. The first layer was represented by compact silica, while the outer layer consisted of mesoporous silica, obtained with the oil-water biphase stratification method. The success of the modification technique was evidenced with transmission electron microscopy, scanning electron microscopy/energy-dispersive X-ray spectroscopy and Fourier-transform infrared spectroscopy. The coating exceptionally increased the specific surface area, from 47 m(2)/g (neat particles) up to 312 m(2)/g, which when combined with lower density, resulted in remarkable improvement in the sedimentation profile. At this expense, the compact/mesoporous silica slightly diminished the magnetization of the particles, while the magnetorheological performance remained at an acceptable level, as evaluated with a modified version of the Cross model. Sedimentation curves were, for the first time in magnetorheology, modelled via a novel five-parameter equation (S-model) that showed a robust fitting capability. The sub-micro additive prevented the primary carbonyl iron particles from aggregation, which was projected into the improved sedimentation behavior (up to a six-fold reduction in the sedimentation rate). Detailed focus was also given to analyze the implications of the sub-micro additives and their surface texture on the overall behavior of the bidisperse magnetorheological fluids. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1011187
utb.identifier.obdid 43884288
utb.identifier.scopus 2-s2.0-85139966515
utb.identifier.wok 000867754100001
utb.identifier.pubmed 36232347
utb.source J-wok
dc.date.accessioned 2022-10-26T13:40:46Z
dc.date.available 2022-10-26T13:40:46Z
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic [RP/CPS/2022/007, LM2018124]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Cvek, Martin
utb.contributor.internalauthor Jamatia, Thaiskang
utb.contributor.internalauthor Šuly, Pavol
utb.contributor.internalauthor Urbánek, Michal
utb.fulltext.affiliation Martin Cvek 1,* , Thaiskang Jamatia 1, Pavol Suly 1, Michal Urbanek 1 and Rafael Torres-Mendieta 2 1 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, 760 01 Zlín, Czech Republic 2 Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic * Correspondence: [email protected]
utb.fulltext.dates Received: 24 August 2022 Accepted: 17 September 2022 Published: 20 September 2022
utb.fulltext.references 1. Wei, M.L.; Gao, Y.F.; Li, X.; Serpe, M.J. Stimuli-responsive polymers and their applications. Polym. Chem. 2017, 8, 127–143. [Google Scholar] 2. Kim, B.; Park, S.; Lee, S. Controlled-crystallinity of SiO2/TiO2 hollow nanoparticles and their electroresponsive behaviors. J. Ind. Eng. Chem. 2021, 104, 203–211. [Google Scholar] 3. Tolvanen, J.; Nelo, M.; Hannu, J.; Juuti, J.; Jantunen, H. All-around universal and photoelastic self-healing elastomer with high toughness and resilience. Adv. Sci. 2021, 8, 2103235. [Google Scholar] [CrossRef] 4. Bica, I. Advances in magnetorheological suspension: Production and properties. J. Ind. Eng. Chem. 2006, 12, 501–515. [Google Scholar] 5. Morillas, J.R.; de Vicente, J. Magnetorheology: A review. Soft Matter. 2020, 16, 9614–9642. [Google Scholar] [CrossRef] 6. Strecker, Z.; Kubik, M.; Vitek, P.; Roupec, J.; Palousek, D.; Sreibr, V. Structured magnetic circuit for magnetorheological damper made by selective laser melting technology. Smart Mater. Struct. 2019, 28, 055016. [Google Scholar] 7. Kariganaur, A.K.; Kumar, H.; Arun, M. Effect of temperature on sedimentation stability and flow characteristics of magnetorheological fluid with damper as the performance analyser. J. Magn. Magn. Mater. 2022, 555, 169342. [Google Scholar] [CrossRef] 8. Wang, D.H.; Liao, W.H. Magnetorheological fluid dampers: A review of parametric modelling. Smart Mater. Struct. 2011, 20, 023001. [Google Scholar] [CrossRef] 9. Silva, A.K.A.; Silva, E.L.; Carrico, A.S.; Egito, E.S.T. Magnetic carriers: A promising device for targeting drugs into the human body. Curr. Pharm. Des. 2007, 13, 1179–1185. [Google Scholar] [CrossRef] 10. Han, S.; Choi, J.; Seo, Y.P.; Park, I.J.; Choi, H.J.; Seo, Y. High-performance magnetorheological suspensions of Pickering-emulsion-polymerized polystyrene/Fe3O4 particles with enhanced stability. Langmuir 2018, 34, 2807–2814. [Google Scholar] [PubMed] 11. Cvek, M.; Kollar, J.; Mrlik, M.; Masar, M.; Suly, P.; Urbanek, M.; Mosnacek, J. Surface-initiated mechano-ATRP as a convenient tool for tuning of bidisperse magnetorheological suspensions toward extreme kinetic stability. Polym. Chem. 2021, 12, 5093–5105. [Google Scholar] [CrossRef] 12. Fang, F.F.; Choi, H.J.; Seo, Y. Sequential coating of magnetic carbonyliron particles with polystyrene and multiwalled carbon nanotubes and its effect on their magnetorheology. ACS Appl. Mater. Interfaces 2010, 2, 54–60. [Google Scholar] [CrossRef] [PubMed] 13. Cvek, M.; Mrlik, M.; Moucka, R.; Sedlacik, M. A systematical study of the overall influence of carbon allotrope additives on performance, stability and redispersibility of magnetorheological fluids. Colloids Surf. A 2018, 543, 83–92. [Google Scholar] [CrossRef] 14. Cvek, M.; Torres-Mendieta, R.; Havelka, O.; Urbanek, M.; Plachy, T.; Cernik, M. Laser-induced fragmentation of carbonyl iron as a clean method to enhance magnetorheological effect. J. Cleaner Prod. 2020, 254, 120182. [Google Scholar] [CrossRef] 15. Hajalilou, A.; Abouzari-Lotf, E.; Abbasi-Chianeh, V.; Shojaei, T.R.; Rezaie, E. Inclusion of octahedron-shaped ZnFe2O4 nanoparticles in combination with carbon dots into carbonyl iron based magnetorheological suspension as additive. J. Alloys Compd. 2018, 737, 536–548. [Google Scholar] [CrossRef] 16. Viota, J.L.; de Vicente, J.; Duran, J.D.G.; Delgado, A. Stabilization of magnetorheological suspensions by polyacrylic acid polymers. J. Colloid Interface Sci. 2005, 284, 527–541. [Google Scholar] [CrossRef] 17. Wei, B.; Gong, X.L.; Jiang, W.Q.; Qin, L.J.; Fan, Y.C. Study on the properties of magnetorheological gel based on polyurethane. J. Appl. Polym. Sci. 2010, 118, 2765–2771. [Google Scholar] [CrossRef] 18. Choi, J.; Han, S.; Kim, H.; Sohn, E.H.; Choi, H.J.; Seo, Y. Suspensions of hollow polydivinylbenzene nanoparticles decorated with Fe3O4 nanoparticles as magnetorheological fluids for microfluidics applications. ACS Appl. Nano Mater. 2019, 2, 6939–6947. [Google Scholar] 19. Chuah, W.H.; Zhang, W.L.; Choi, H.J.; Seo, Y. Magnetorheology of core-shell structured carbonyl iron/polystyrene foam microparticles suspension with enhanced stability. Macromolecules 2015, 48, 7311–7319. [Google Scholar] [CrossRef] 20. Chen, Y.J.; Gao, P.; Wang, R.X.; Zhu, C.L.; Wang, L.J.; Cao, M.S.; Jin, H.B. Porous Fe3O4/SnO2 core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 2009, 113, 10061–10064. [Google Scholar] [CrossRef] 21. Liu, J.; Qiao, S.Z.; Hu, Q.H.; Lu, G.Q. Magnetic nanocomposites with mesoporous structures: Synthesis and applications. Small 2011, 7, 425–443. [Google Scholar] [CrossRef] 22. Wei, J.; Zou, L.K.; Li, Y.L.; Zhang, X.M. Synthesis of core-shell-structured mesoporous silica nanospheres with dual-pores for biphasic catalysis. New J. Chem. 2019, 43, 5833–5838. [Google Scholar] [CrossRef] 23. Gawande, M.B.; Goswami, A.; Asefa, T.; Guo, H.Z.; Biradar, A.V.; Peng, D.L.; Zboril, R.; Varma, R.S. Core-shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 2015, 44, 7540–7590. [Google Scholar] [CrossRef] 24. Wei, J.; Zou, L.K. Synthesis of magnetical microspheres with tunable large pore mesostructures. J. Porous Mater. 2016, 23, 577–581. [Google Scholar] [CrossRef] 25. Liorzou, F.; Phelps, B.; Atherton, D.L. Macroscopic models of magnetization. IEEE Trans. Magn. 2000, 36, 418–428. [Google Scholar] [CrossRef] 26. Hwang, S.W.; Umar, A.; Dar, G.N.; Kim, S.H.; Badran, R.I. Synthesis and characterization of iron oxide nanoparticles for phenyl hydrazine sensor applications. Sens. Lett. 2014, 12, 97–101. [Google Scholar] [CrossRef] 27. Peer, P.; Cvek, M.; Urbanek, M.; Sedlacik, M. Preparation of electrospun magnetic polyvinyl butyral/Fe2O3 nanofibrous membranes for effective removal of iron ions from groundwater. J. Appl. Polym. Sci. 2020, 137, c49576. [Google Scholar] [CrossRef] 28. Anupama, A.V.; Kumaran, V.; Sahoo, B. Application of monodisperse Fe3O4 submicrospheres in magnetorheological fluids. J. Ind. Eng. Chem. 2018, 67, 347–357. [Google Scholar] [CrossRef] 29. Cvek, M.; Moucka, R.; Sedlacik, M.; Pavlinek, V. Electromagnetic, magnetorheological and stability properties of polysiloxane elastomers based on silane-modified carbonyl iron particles with enhanced wettability. Smart Mater. Struct. 2017, 26, 105003. [Google Scholar] [CrossRef] 30. Du, Z.; Qiu, Y.; Niu, T.; Wang, W.; Ye, X.; Wang, J.; Zhang, W.L.; Choi, H.J.; Zeng, H. Bio-inspired passion fruit-like Fe3O4@C nanospheres enabling high-stability magnetorheological performances. Langmuir 2020, 36, 7706–7714. [Google Scholar] [CrossRef] 31. Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] 32. Aruna, M.N.; Rahman, M.R.; Joladarashi, S.; Kumar, H.; Bhat, P.D. Influence of different fumed silica as thixotropic additive on carbonyl particles magnetorheological fluids for sedimentation effects. J. Magn. Magn. Mater. 2021, 529, 167910. [Google Scholar] [CrossRef] 33. de Vicente, J.; Lopez-Lopez, M.T.; Gonzalez-Caballero, F.; Duran, J.D.G. Rheological study of the stabilization of magnetizable colloidal suspensions by addition of silica nanoparticles. J. Rheol. 2003, 47, 1093–1109. [Google Scholar] [CrossRef] 34. Felicia, L.J.; Philip, J. Effect of hydrophilic silica nanoparticles on the magnetorheological properties of ferrofluids: A study using opto-magnetorheometer. Langmuir 2015, 31, 3343–3353. [Google Scholar] [CrossRef] 35. Plachy, T.; Cvek, M.; Munster, L.; Hanulikova, B.; Suly, P.; Vesel, A.; Cheng, Q. Enhanced magnetorheological effect of suspensions based on carbonyl iron particles coated with poly(amidoamine) dendrons. Rheol. Acta 2021, 60, 263–276. [Google Scholar] [CrossRef] 36. He, M.Y.; Zeng, Y.Z.; Zhou, F.; Kong, G.F.; Lu, Y.Q.; Chen, W.; Ma, Y.; Yu, R.; Wang, Z.; Li, Z.; et al. MnFe2O4 nanoparticles anchored on the surface of MgAl-layered double hydroxide nanoplates for stable magnetorheological fluids. J. Mol. Liq. 2020, 319, 114098. [Google Scholar] [CrossRef] 37. Stejskal, J.; Sapurina, I.; Vilcakova, J.; Plachy, T.; Sedlacik, M.; Bubulinca, C.; Goralik, M.; Trchova, M.; Kolska, Z.; Prokes, J. Conducting and magnetic composites polypyrrole nanotubes/magnetite nanoparticles: Application in magnetorheology. ACS Appl. Nano Mater. 2021, 4, 2247–2256. [Google Scholar] [CrossRef] 38. Wang, G.; Zhao, D.; Li, N.; Zeng, Y.; Han, S.; Ma, Y.; Dong, X.; Yu, R. Facile synthesis of hierarchically structured flower-like Fe3O4 microspheres for high-performance magnetorheological fluids. J. Ind. Eng. Chem. 2019, 79, 217–225. [Google Scholar] [CrossRef] 39. Quan, X.M.; Liu, Y.D.; Choi, H.J. Magnetorheology of iron associated magnetic metal-organic framework nanoparticle. J. Appl. Phys. 2015, 117, 17C732. [Google Scholar] [CrossRef] 40. Wang, G.; Zeng, Y.; Zhou, F.; Chen, X.; Ma, Y.; Zheng, L.; Li, M.; Sun, Y.; Liu, X.; Liu, H.; et al. One-step solvothermal synthesis of porous MnFe2O4 nanoflakes and their magnetorheological properties. J. Alloys Compd. 2020, 819, 153044. [Google Scholar] [CrossRef] 41. Han, S.; Choi, J.; Kim, J.; Han, H.N.; Choi, H.J.; Seo, Y. Porous Fe3O4 submicron particles for use in magnetorheological fluids. Colloids Surf. A Physicochem. Eng. Asp. 2021, 613, 126066. [Google Scholar] [CrossRef] 42. Cvek, M.; Mrlik, M.; Ilcikova, M.; Mosnacek, J.; Babayan, V.; Kuceková, Z.; Humpolicek, P.; Pavlinek, V. The chemical stability and cytotoxicity of carbonyl iron particles grafted with poly(glycidyl methacrylate) and the magnetorheological activity of their suspensions. RSC Adv. 2015, 5, 72816–72824. [Google Scholar] [CrossRef] 43. Zhang, S.F.; Wu, W.; Xiao, X.H.; Zhou, J.; Ren, F.; Jiang, C.Z. Preparation and characterization of spindle-like Fe3O4 mesoporous nanoparticles. Nanoscale Res. Lett. 2011, 6, 89. [Google Scholar] [CrossRef] [PubMed] 44. Ashtiani, M.; Hashemabadi, S.H.; Ghaffari, A. A review on the magnetorheological fluid preparation and stabilization. J. Magn. Magn. Mater. 2015, 374, 716–730. [Google Scholar] [CrossRef] 45. Wang, Y.K.; Xie, W.Y.; Wu, D.F. Rheological properties of magnetorheological suspensions stabilized with nanocelluloses. Carbohydr. Polym. 2020, 231, 115776. [Google Scholar] [CrossRef] 46. Laherisheth, Z.; Parekh, K.; Upadhyay, R.V. Role of inter-particle force between micro and nano magnetic particles on the stability of magnetorheological fluid. AIP Adv. 2017, 7, 025206. [Google Scholar] [CrossRef] 47. Park, B.J.; Fang, F.F.; Choi, H.J. Magnetorheology: Materials and application. Soft Matter. 2010, 6, 5246–5253. [Google Scholar] [CrossRef] 48. Anupama, A.V.; Kumaran, V.; Sahoo, B. Effect of magnetic dipolar interactions and size dispersity on the origin of steady state magnetomechanical response in bidisperse Mn-Zn ferrite spherical particle based magnetorheological fluids. New J. Chem. 2019, 43, 9969–9979. [Google Scholar] [CrossRef] 49. Cvek, M. Constitutive models that exceed the fitting capabilities of the Herschel–Bulkley model: A case study for shear magnetorheology. Mech. Mater. 2022, 173, 104445. [Google Scholar] [CrossRef] 50. Bica, I.; Liu, Y.D.; Choi, H.J. Physical characteristics of magnetorheological suspensions and their applications. J. Ind. Eng. Chem. 2013, 19, 394–406. [Google Scholar] [CrossRef] 51. de Vicente, J.; Vereda, F.; Segovia-Gutierrez, J.P.; Morales, M.D.; Hidalgo-Alvarez, R. Effect of particle shape in magnetorheology. J. Rheol. 2010, 54, 1337–1362. [Google Scholar] [CrossRef] 52. Yang, J.J.; Yan, H.; Dai, J.; Hu, Z.D.; Zhang, H.S. The rheological response of carbonyl iron particles suspended in mineral oil solution of 12-hydroxy stearic acid. J. Rheol. 2017, 61, 515–524. [Google Scholar] [CrossRef] 53. Bae, D.H.; Choi, H.J.; Choi, K.; Nam, J.; Islam, M.S.; Kao, N. Microcrystalline cellulose added carbonyl iron suspension and its magnetorheology. Colloids Surf. A Physicochem. Eng. Asp. 2017, 514, 161–167. [Google Scholar] [CrossRef] 54. Arief, I.; Mukhopadhyay, P.K. Preparation of spherical and cubic Fe55Co45 microstructures for studying the role of particle morphology in magnetorheological suspensions. J. Magn. Magn. Mater. 2014, 360, 104–108. [Google Scholar] [CrossRef] 55. Plachy, T.; Cvek, M.; Kozakova, Z.; Sedlacik, M.; Moucka, R. The enhanced MR performance of dimorphic MR suspensions containing either magnetic rods or their non-magnetic analogs. Smart Mater. Struct. 2017, 26, 025026. [Google Scholar] [CrossRef] 56. Kang, X.; Xia, Z.; Wang, J.F.; Yang, W. A novel approach to model the batch sedimentation and estimate the settling velocity, solid volume fraction, and floc size of kaolinite in concentrated solutions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 579, 123647. [Google Scholar] [CrossRef] 57. Nejatpour, M.; Unal, U.; Acar, H.Y. Bidisperse magneto-rheological fluids consisting of functional SPIONs added to commercial MRF. J. Ind. Eng. Chem. 2020, 91, 110–120. [Google Scholar] [CrossRef]
utb.fulltext.sponsorship The authors M.C., T.J., P.S. and M.U. gratefully acknowledge the project DKRVO (RP/CPS/2022/007) supported by the Ministry of Education, Youth and Sports of the Czech Republic. The author R.T.-M. would like to acknowledge Research Infrastructures NanoEnviCz (Project No. LM2018124), also supported by the Ministry of Education, Youth and Sports of the Czech Republic.
utb.wos.affiliation [Cvek, Martin; Jamatia, Thaiskang; Suly, Pavol; Urbanek, Michal] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Trida T Bati 5678, Zlin 76001, Czech Republic; [Torres-Mendieta, Rafael] Tech Univ Liberec, Inst Nanomat Adv Technol & Innovat, Studentska 1402-2, Liberec 46117, Czech Republic
utb.fulltext.projects DKRVO (RP/CPS/2022/007)
utb.fulltext.projects LM2018124
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International