Kontaktujte nás | Jazyk: čeština English
dc.title | Stable magnetorheological fluids containing bidisperse fillers with compact/mesoporous silica coatings | en |
dc.contributor.author | Cvek, Martin | |
dc.contributor.author | Jamatia, Thaiskang | |
dc.contributor.author | Šuly, Pavol | |
dc.contributor.author | Urbánek, Michal | |
dc.contributor.author | Torres-Mendieta, Rafael | |
dc.relation.ispartof | International Journal of Molecular Sciences | |
dc.identifier.issn | 1661-6596 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.issn | 1422-0067 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022 | |
utb.relation.volume | 23 | |
utb.relation.issue | 19 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | MDPI | |
dc.identifier.doi | 10.3390/ijms231911044 | |
dc.relation.uri | https://www.mdpi.com/1422-0067/23/19/11044 | |
dc.relation.uri | https://www.mdpi.com/1422-0067/23/19/11044/htm | |
dc.subject | smart materials | en |
dc.subject | magnetorheology | en |
dc.subject | surface texture | en |
dc.subject | mesoporous silica | en |
dc.subject | sedimentation | en |
dc.subject | suspensions | en |
dc.subject | coating | en |
dc.subject | nano-layer | en |
dc.description.abstract | A drawback of magnetorheological fluids is low kinetic stability, which severely limits their practical utilization. This paper describes the suppression of sedimentation through a combination of bidispersal and coating techniques. A magnetic, sub-micro additive was fabricated and sequentially coated with organosilanes. The first layer was represented by compact silica, while the outer layer consisted of mesoporous silica, obtained with the oil-water biphase stratification method. The success of the modification technique was evidenced with transmission electron microscopy, scanning electron microscopy/energy-dispersive X-ray spectroscopy and Fourier-transform infrared spectroscopy. The coating exceptionally increased the specific surface area, from 47 m(2)/g (neat particles) up to 312 m(2)/g, which when combined with lower density, resulted in remarkable improvement in the sedimentation profile. At this expense, the compact/mesoporous silica slightly diminished the magnetization of the particles, while the magnetorheological performance remained at an acceptable level, as evaluated with a modified version of the Cross model. Sedimentation curves were, for the first time in magnetorheology, modelled via a novel five-parameter equation (S-model) that showed a robust fitting capability. The sub-micro additive prevented the primary carbonyl iron particles from aggregation, which was projected into the improved sedimentation behavior (up to a six-fold reduction in the sedimentation rate). Detailed focus was also given to analyze the implications of the sub-micro additives and their surface texture on the overall behavior of the bidisperse magnetorheological fluids. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1011187 | |
utb.identifier.obdid | 43884288 | |
utb.identifier.scopus | 2-s2.0-85139966515 | |
utb.identifier.wok | 000867754100001 | |
utb.identifier.pubmed | 36232347 | |
utb.source | J-wok | |
dc.date.accessioned | 2022-10-26T13:40:46Z | |
dc.date.available | 2022-10-26T13:40:46Z | |
dc.description.sponsorship | Ministry of Education, Youth and Sports of the Czech Republic [RP/CPS/2022/007, LM2018124] | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Cvek, Martin | |
utb.contributor.internalauthor | Jamatia, Thaiskang | |
utb.contributor.internalauthor | Šuly, Pavol | |
utb.contributor.internalauthor | Urbánek, Michal | |
utb.fulltext.affiliation | Martin Cvek 1,* , Thaiskang Jamatia 1, Pavol Suly 1, Michal Urbanek 1 and Rafael Torres-Mendieta 2 1 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, 760 01 Zlín, Czech Republic 2 Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic * Correspondence: [email protected] | |
utb.fulltext.dates | Received: 24 August 2022 Accepted: 17 September 2022 Published: 20 September 2022 | |
utb.fulltext.references | 1. Wei, M.L.; Gao, Y.F.; Li, X.; Serpe, M.J. Stimuli-responsive polymers and their applications. Polym. Chem. 2017, 8, 127–143. [Google Scholar] 2. Kim, B.; Park, S.; Lee, S. Controlled-crystallinity of SiO2/TiO2 hollow nanoparticles and their electroresponsive behaviors. J. Ind. Eng. Chem. 2021, 104, 203–211. [Google Scholar] 3. Tolvanen, J.; Nelo, M.; Hannu, J.; Juuti, J.; Jantunen, H. All-around universal and photoelastic self-healing elastomer with high toughness and resilience. Adv. Sci. 2021, 8, 2103235. [Google Scholar] [CrossRef] 4. Bica, I. Advances in magnetorheological suspension: Production and properties. J. Ind. Eng. Chem. 2006, 12, 501–515. [Google Scholar] 5. Morillas, J.R.; de Vicente, J. Magnetorheology: A review. Soft Matter. 2020, 16, 9614–9642. [Google Scholar] [CrossRef] 6. Strecker, Z.; Kubik, M.; Vitek, P.; Roupec, J.; Palousek, D.; Sreibr, V. Structured magnetic circuit for magnetorheological damper made by selective laser melting technology. Smart Mater. Struct. 2019, 28, 055016. [Google Scholar] 7. Kariganaur, A.K.; Kumar, H.; Arun, M. Effect of temperature on sedimentation stability and flow characteristics of magnetorheological fluid with damper as the performance analyser. J. Magn. Magn. Mater. 2022, 555, 169342. [Google Scholar] [CrossRef] 8. Wang, D.H.; Liao, W.H. Magnetorheological fluid dampers: A review of parametric modelling. Smart Mater. Struct. 2011, 20, 023001. [Google Scholar] [CrossRef] 9. Silva, A.K.A.; Silva, E.L.; Carrico, A.S.; Egito, E.S.T. Magnetic carriers: A promising device for targeting drugs into the human body. Curr. Pharm. Des. 2007, 13, 1179–1185. [Google Scholar] [CrossRef] 10. Han, S.; Choi, J.; Seo, Y.P.; Park, I.J.; Choi, H.J.; Seo, Y. High-performance magnetorheological suspensions of Pickering-emulsion-polymerized polystyrene/Fe3O4 particles with enhanced stability. Langmuir 2018, 34, 2807–2814. [Google Scholar] [PubMed] 11. Cvek, M.; Kollar, J.; Mrlik, M.; Masar, M.; Suly, P.; Urbanek, M.; Mosnacek, J. Surface-initiated mechano-ATRP as a convenient tool for tuning of bidisperse magnetorheological suspensions toward extreme kinetic stability. Polym. Chem. 2021, 12, 5093–5105. [Google Scholar] [CrossRef] 12. Fang, F.F.; Choi, H.J.; Seo, Y. Sequential coating of magnetic carbonyliron particles with polystyrene and multiwalled carbon nanotubes and its effect on their magnetorheology. ACS Appl. Mater. Interfaces 2010, 2, 54–60. [Google Scholar] [CrossRef] [PubMed] 13. Cvek, M.; Mrlik, M.; Moucka, R.; Sedlacik, M. A systematical study of the overall influence of carbon allotrope additives on performance, stability and redispersibility of magnetorheological fluids. Colloids Surf. A 2018, 543, 83–92. [Google Scholar] [CrossRef] 14. Cvek, M.; Torres-Mendieta, R.; Havelka, O.; Urbanek, M.; Plachy, T.; Cernik, M. Laser-induced fragmentation of carbonyl iron as a clean method to enhance magnetorheological effect. J. Cleaner Prod. 2020, 254, 120182. [Google Scholar] [CrossRef] 15. Hajalilou, A.; Abouzari-Lotf, E.; Abbasi-Chianeh, V.; Shojaei, T.R.; Rezaie, E. Inclusion of octahedron-shaped ZnFe2O4 nanoparticles in combination with carbon dots into carbonyl iron based magnetorheological suspension as additive. J. Alloys Compd. 2018, 737, 536–548. [Google Scholar] [CrossRef] 16. Viota, J.L.; de Vicente, J.; Duran, J.D.G.; Delgado, A. Stabilization of magnetorheological suspensions by polyacrylic acid polymers. J. Colloid Interface Sci. 2005, 284, 527–541. [Google Scholar] [CrossRef] 17. Wei, B.; Gong, X.L.; Jiang, W.Q.; Qin, L.J.; Fan, Y.C. Study on the properties of magnetorheological gel based on polyurethane. J. Appl. Polym. Sci. 2010, 118, 2765–2771. [Google Scholar] [CrossRef] 18. Choi, J.; Han, S.; Kim, H.; Sohn, E.H.; Choi, H.J.; Seo, Y. Suspensions of hollow polydivinylbenzene nanoparticles decorated with Fe3O4 nanoparticles as magnetorheological fluids for microfluidics applications. ACS Appl. Nano Mater. 2019, 2, 6939–6947. [Google Scholar] 19. Chuah, W.H.; Zhang, W.L.; Choi, H.J.; Seo, Y. Magnetorheology of core-shell structured carbonyl iron/polystyrene foam microparticles suspension with enhanced stability. Macromolecules 2015, 48, 7311–7319. [Google Scholar] [CrossRef] 20. Chen, Y.J.; Gao, P.; Wang, R.X.; Zhu, C.L.; Wang, L.J.; Cao, M.S.; Jin, H.B. Porous Fe3O4/SnO2 core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 2009, 113, 10061–10064. [Google Scholar] [CrossRef] 21. Liu, J.; Qiao, S.Z.; Hu, Q.H.; Lu, G.Q. Magnetic nanocomposites with mesoporous structures: Synthesis and applications. Small 2011, 7, 425–443. [Google Scholar] [CrossRef] 22. Wei, J.; Zou, L.K.; Li, Y.L.; Zhang, X.M. Synthesis of core-shell-structured mesoporous silica nanospheres with dual-pores for biphasic catalysis. New J. Chem. 2019, 43, 5833–5838. [Google Scholar] [CrossRef] 23. Gawande, M.B.; Goswami, A.; Asefa, T.; Guo, H.Z.; Biradar, A.V.; Peng, D.L.; Zboril, R.; Varma, R.S. Core-shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 2015, 44, 7540–7590. [Google Scholar] [CrossRef] 24. Wei, J.; Zou, L.K. Synthesis of magnetical microspheres with tunable large pore mesostructures. J. Porous Mater. 2016, 23, 577–581. [Google Scholar] [CrossRef] 25. Liorzou, F.; Phelps, B.; Atherton, D.L. Macroscopic models of magnetization. IEEE Trans. Magn. 2000, 36, 418–428. [Google Scholar] [CrossRef] 26. Hwang, S.W.; Umar, A.; Dar, G.N.; Kim, S.H.; Badran, R.I. Synthesis and characterization of iron oxide nanoparticles for phenyl hydrazine sensor applications. Sens. Lett. 2014, 12, 97–101. [Google Scholar] [CrossRef] 27. Peer, P.; Cvek, M.; Urbanek, M.; Sedlacik, M. Preparation of electrospun magnetic polyvinyl butyral/Fe2O3 nanofibrous membranes for effective removal of iron ions from groundwater. J. Appl. Polym. Sci. 2020, 137, c49576. [Google Scholar] [CrossRef] 28. Anupama, A.V.; Kumaran, V.; Sahoo, B. Application of monodisperse Fe3O4 submicrospheres in magnetorheological fluids. J. Ind. Eng. Chem. 2018, 67, 347–357. [Google Scholar] [CrossRef] 29. Cvek, M.; Moucka, R.; Sedlacik, M.; Pavlinek, V. Electromagnetic, magnetorheological and stability properties of polysiloxane elastomers based on silane-modified carbonyl iron particles with enhanced wettability. Smart Mater. Struct. 2017, 26, 105003. [Google Scholar] [CrossRef] 30. Du, Z.; Qiu, Y.; Niu, T.; Wang, W.; Ye, X.; Wang, J.; Zhang, W.L.; Choi, H.J.; Zeng, H. Bio-inspired passion fruit-like Fe3O4@C nanospheres enabling high-stability magnetorheological performances. Langmuir 2020, 36, 7706–7714. [Google Scholar] [CrossRef] 31. Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] 32. Aruna, M.N.; Rahman, M.R.; Joladarashi, S.; Kumar, H.; Bhat, P.D. Influence of different fumed silica as thixotropic additive on carbonyl particles magnetorheological fluids for sedimentation effects. J. Magn. Magn. Mater. 2021, 529, 167910. [Google Scholar] [CrossRef] 33. de Vicente, J.; Lopez-Lopez, M.T.; Gonzalez-Caballero, F.; Duran, J.D.G. Rheological study of the stabilization of magnetizable colloidal suspensions by addition of silica nanoparticles. J. Rheol. 2003, 47, 1093–1109. [Google Scholar] [CrossRef] 34. Felicia, L.J.; Philip, J. Effect of hydrophilic silica nanoparticles on the magnetorheological properties of ferrofluids: A study using opto-magnetorheometer. Langmuir 2015, 31, 3343–3353. [Google Scholar] [CrossRef] 35. Plachy, T.; Cvek, M.; Munster, L.; Hanulikova, B.; Suly, P.; Vesel, A.; Cheng, Q. Enhanced magnetorheological effect of suspensions based on carbonyl iron particles coated with poly(amidoamine) dendrons. Rheol. Acta 2021, 60, 263–276. [Google Scholar] [CrossRef] 36. He, M.Y.; Zeng, Y.Z.; Zhou, F.; Kong, G.F.; Lu, Y.Q.; Chen, W.; Ma, Y.; Yu, R.; Wang, Z.; Li, Z.; et al. MnFe2O4 nanoparticles anchored on the surface of MgAl-layered double hydroxide nanoplates for stable magnetorheological fluids. J. Mol. Liq. 2020, 319, 114098. [Google Scholar] [CrossRef] 37. Stejskal, J.; Sapurina, I.; Vilcakova, J.; Plachy, T.; Sedlacik, M.; Bubulinca, C.; Goralik, M.; Trchova, M.; Kolska, Z.; Prokes, J. Conducting and magnetic composites polypyrrole nanotubes/magnetite nanoparticles: Application in magnetorheology. ACS Appl. Nano Mater. 2021, 4, 2247–2256. [Google Scholar] [CrossRef] 38. Wang, G.; Zhao, D.; Li, N.; Zeng, Y.; Han, S.; Ma, Y.; Dong, X.; Yu, R. Facile synthesis of hierarchically structured flower-like Fe3O4 microspheres for high-performance magnetorheological fluids. J. Ind. Eng. Chem. 2019, 79, 217–225. [Google Scholar] [CrossRef] 39. Quan, X.M.; Liu, Y.D.; Choi, H.J. Magnetorheology of iron associated magnetic metal-organic framework nanoparticle. J. Appl. Phys. 2015, 117, 17C732. [Google Scholar] [CrossRef] 40. Wang, G.; Zeng, Y.; Zhou, F.; Chen, X.; Ma, Y.; Zheng, L.; Li, M.; Sun, Y.; Liu, X.; Liu, H.; et al. One-step solvothermal synthesis of porous MnFe2O4 nanoflakes and their magnetorheological properties. J. Alloys Compd. 2020, 819, 153044. [Google Scholar] [CrossRef] 41. Han, S.; Choi, J.; Kim, J.; Han, H.N.; Choi, H.J.; Seo, Y. Porous Fe3O4 submicron particles for use in magnetorheological fluids. Colloids Surf. A Physicochem. Eng. Asp. 2021, 613, 126066. [Google Scholar] [CrossRef] 42. Cvek, M.; Mrlik, M.; Ilcikova, M.; Mosnacek, J.; Babayan, V.; Kuceková, Z.; Humpolicek, P.; Pavlinek, V. The chemical stability and cytotoxicity of carbonyl iron particles grafted with poly(glycidyl methacrylate) and the magnetorheological activity of their suspensions. RSC Adv. 2015, 5, 72816–72824. [Google Scholar] [CrossRef] 43. Zhang, S.F.; Wu, W.; Xiao, X.H.; Zhou, J.; Ren, F.; Jiang, C.Z. Preparation and characterization of spindle-like Fe3O4 mesoporous nanoparticles. Nanoscale Res. Lett. 2011, 6, 89. [Google Scholar] [CrossRef] [PubMed] 44. Ashtiani, M.; Hashemabadi, S.H.; Ghaffari, A. A review on the magnetorheological fluid preparation and stabilization. J. Magn. Magn. Mater. 2015, 374, 716–730. [Google Scholar] [CrossRef] 45. Wang, Y.K.; Xie, W.Y.; Wu, D.F. Rheological properties of magnetorheological suspensions stabilized with nanocelluloses. Carbohydr. Polym. 2020, 231, 115776. [Google Scholar] [CrossRef] 46. Laherisheth, Z.; Parekh, K.; Upadhyay, R.V. Role of inter-particle force between micro and nano magnetic particles on the stability of magnetorheological fluid. AIP Adv. 2017, 7, 025206. [Google Scholar] [CrossRef] 47. Park, B.J.; Fang, F.F.; Choi, H.J. Magnetorheology: Materials and application. Soft Matter. 2010, 6, 5246–5253. [Google Scholar] [CrossRef] 48. Anupama, A.V.; Kumaran, V.; Sahoo, B. Effect of magnetic dipolar interactions and size dispersity on the origin of steady state magnetomechanical response in bidisperse Mn-Zn ferrite spherical particle based magnetorheological fluids. New J. Chem. 2019, 43, 9969–9979. [Google Scholar] [CrossRef] 49. Cvek, M. Constitutive models that exceed the fitting capabilities of the Herschel–Bulkley model: A case study for shear magnetorheology. Mech. Mater. 2022, 173, 104445. [Google Scholar] [CrossRef] 50. Bica, I.; Liu, Y.D.; Choi, H.J. Physical characteristics of magnetorheological suspensions and their applications. J. Ind. Eng. Chem. 2013, 19, 394–406. [Google Scholar] [CrossRef] 51. de Vicente, J.; Vereda, F.; Segovia-Gutierrez, J.P.; Morales, M.D.; Hidalgo-Alvarez, R. Effect of particle shape in magnetorheology. J. Rheol. 2010, 54, 1337–1362. [Google Scholar] [CrossRef] 52. Yang, J.J.; Yan, H.; Dai, J.; Hu, Z.D.; Zhang, H.S. The rheological response of carbonyl iron particles suspended in mineral oil solution of 12-hydroxy stearic acid. J. Rheol. 2017, 61, 515–524. [Google Scholar] [CrossRef] 53. Bae, D.H.; Choi, H.J.; Choi, K.; Nam, J.; Islam, M.S.; Kao, N. Microcrystalline cellulose added carbonyl iron suspension and its magnetorheology. Colloids Surf. A Physicochem. Eng. Asp. 2017, 514, 161–167. [Google Scholar] [CrossRef] 54. Arief, I.; Mukhopadhyay, P.K. Preparation of spherical and cubic Fe55Co45 microstructures for studying the role of particle morphology in magnetorheological suspensions. J. Magn. Magn. Mater. 2014, 360, 104–108. [Google Scholar] [CrossRef] 55. Plachy, T.; Cvek, M.; Kozakova, Z.; Sedlacik, M.; Moucka, R. The enhanced MR performance of dimorphic MR suspensions containing either magnetic rods or their non-magnetic analogs. Smart Mater. Struct. 2017, 26, 025026. [Google Scholar] [CrossRef] 56. Kang, X.; Xia, Z.; Wang, J.F.; Yang, W. A novel approach to model the batch sedimentation and estimate the settling velocity, solid volume fraction, and floc size of kaolinite in concentrated solutions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 579, 123647. [Google Scholar] [CrossRef] 57. Nejatpour, M.; Unal, U.; Acar, H.Y. Bidisperse magneto-rheological fluids consisting of functional SPIONs added to commercial MRF. J. Ind. Eng. Chem. 2020, 91, 110–120. [Google Scholar] [CrossRef] | |
utb.fulltext.sponsorship | The authors M.C., T.J., P.S. and M.U. gratefully acknowledge the project DKRVO (RP/CPS/2022/007) supported by the Ministry of Education, Youth and Sports of the Czech Republic. The author R.T.-M. would like to acknowledge Research Infrastructures NanoEnviCz (Project No. LM2018124), also supported by the Ministry of Education, Youth and Sports of the Czech Republic. | |
utb.wos.affiliation | [Cvek, Martin; Jamatia, Thaiskang; Suly, Pavol; Urbanek, Michal] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Trida T Bati 5678, Zlin 76001, Czech Republic; [Torres-Mendieta, Rafael] Tech Univ Liberec, Inst Nanomat Adv Technol & Innovat, Studentska 1402-2, Liberec 46117, Czech Republic | |
utb.fulltext.projects | DKRVO (RP/CPS/2022/007) | |
utb.fulltext.projects | LM2018124 | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.ou | Centre of Polymer Systems | |
utb.fulltext.ou | Centre of Polymer Systems | |
utb.fulltext.ou | Centre of Polymer Systems | |
utb.fulltext.ou | Centre of Polymer Systems |