Kontaktujte nás | Jazyk: čeština English
dc.title | PLA/PHB-based materials fully biodegradable under both industrial and home-composting conditions | en |
dc.contributor.author | Fogašová, Mária | |
dc.contributor.author | Figalla, Silvestr | |
dc.contributor.author | Danišová, Lucia | |
dc.contributor.author | Medlenová, Elena | |
dc.contributor.author | Hlaváčiková, Slávka | |
dc.contributor.author | Vanovčanová, Zuzana | |
dc.contributor.author | Omaníková, Leona | |
dc.contributor.author | Baco, Andrej | |
dc.contributor.author | Horváth, Vojtech | |
dc.contributor.author | Mikolajová, Mária | |
dc.contributor.author | Feranc, Jozef | |
dc.contributor.author | Bočkaj, Ján | |
dc.contributor.author | Plavec, Roderik | |
dc.contributor.author | Alexy, Pavol | |
dc.contributor.author | Repiská, Martina | |
dc.contributor.author | Přikryl, Radek | |
dc.contributor.author | Kontárová, Soňa | |
dc.contributor.author | Báreková, Anna | |
dc.contributor.author | Sláviková, Martina | |
dc.contributor.author | Koutný, Marek | |
dc.contributor.author | Fayyaz Bakhsh, Ahmad | |
dc.contributor.author | Kadlečková, Markéta | |
dc.relation.ispartof | Polymers | |
dc.identifier.issn | 2073-4360 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022 | |
utb.relation.volume | 14 | |
utb.relation.issue | 19 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | MDPI | |
dc.identifier.doi | 10.3390/polym14194113 | |
dc.relation.uri | https://www.mdpi.com/2073-4360/14/19/4113 | |
dc.relation.uri | https://www.mdpi.com/2073-4360/14/19/4113/htm | |
dc.subject | polylactic acid (PLA) | en |
dc.subject | polyhydroxybutyrate (PHB) | en |
dc.subject | blend polymeric material | en |
dc.subject | biodegradation | en |
dc.subject | industrial compost | en |
dc.subject | home-compost | en |
dc.description.abstract | In order to make bioplastics accessible for a wider spectrum of applications, ready-to-use plastic material formulations should be available with tailored properties. Ideally, these kinds of materials should also be "home-compostable" to simplify their organic recycling. Therefore, materials based on PLA (polylactid acid) and PHB (polyhydroxybutyrate) blends are presented which contain suitable additives, and some of them contain also thermoplastic starch as a filler, which decreases the price of the final compound. They are intended for various applications, as documented by products made out of them. The produced materials are fully biodegradable under industrial composting conditions. Surprisingly, some of the materials, even those which contain more PLA than PHB, are also fully biodegradable under home-composting conditions within a period of about six months. Experiments made under laboratory conditions were supported with data obtained from a kitchen waste pilot composter and from municipal composting plant experiments. Material properties, environmental conditions, and microbiology data were recorded during some of these experiments to document the biodegradation process and changes on the surface and inside the materials on a molecular level. | en |
utb.faculty | Faculty of Technology | |
dc.identifier.uri | http://hdl.handle.net/10563/1011185 | |
utb.identifier.obdid | 43883976 | |
utb.identifier.scopus | 2-s2.0-85139834615 | |
utb.identifier.wok | 000867188400001 | |
utb.identifier.pubmed | 36236060 | |
utb.source | j-scopus | |
dc.date.accessioned | 2022-10-26T13:40:46Z | |
dc.date.available | 2022-10-26T13:40:46Z | |
dc.description.sponsorship | IGA/FT/2022/006; Agentúra na Podporu Výskumu a Vývoja, APVV: 313011V336, APVV-20-0193, APVV-20-0256; European Regional Development Fund, ERDF: FCH-S-21-7553 | |
dc.description.sponsorship | Internal Grant Agency [IGA/FT/2022/006]; Slovak Research and Development Agency [APVV-20-0256, APVV-20-0193]; European Regional Development Fund [313011V336]; Specific University Research Grant [FCH-S-21-7553] | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Department of Environmental Protection Engineering | |
utb.contributor.internalauthor | Koutný, Marek | |
utb.contributor.internalauthor | Fayyaz Bakhsh, Ahmad | |
utb.contributor.internalauthor | Kadlečková, Markéta | |
utb.fulltext.affiliation | Mária Fogašová 1, Silvestr Figalla 2,*, Lucia Danišová 1, Elena Medlenová 1, Slávka Hlaváčiková 1, Zuzana Vanovčanová 1, Leona Omaníková 1, Andrej Baco 1, Vojtech Horváth 1, Mária Mikolajová 1, Jozef Feranc 1, Ján Bočkaj 1, Roderik Plavec 1, Pavol Alexy 1, Martina Repiská 1, Radek Přikryl 2, Soňa Kontárová 2, Anna Báreková 3, Martina Sláviková 3, Marek Koutný 4, Ahmad Fayyazbakhsh 4 and Markéta Kadlečková 4 1 Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic 2 Institute of Materials Science, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic 3 Department of Landscape Engineering, Hortyculture and Landscape Engineering Faculty, Slovak University of Agriculture, Hospodárska 7, 949 76 Nitra, Slovak Republic 4 Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nad Ovčírnou III 3685, 760 01 Zlín, Czech Republic * Correspondence: [email protected] | |
utb.fulltext.dates | Received: 5 September 2022 Accepted: 23 September 2022 Published: 30 September 2022 | |
utb.fulltext.references | 1. Duraj-Thatte, A.M.; Manjula-Basavanna, A.; Courchesne, N.-M.D.; Cannici, G.I.; Sánchez-Ferrer, A.; Frank, B.P.; Hag, L.V.; Cotts, S.K.; Fairbrother, D.H.; Mezzenga, R.; et al. Water-processable, biodegradable and coatable aquaplastic from engineered biofilms. Nat. Chem. Biol. 2021, 17, 732–738. [CrossRef] 2. Xia, Q.; Chen, C.; Yao, Y.; Li, J.; He, S.; Zhou, Y.; Li, T.; Pan, X.; Yao, Y.; Hu, L. A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain. 2021, 4, 627–635. [CrossRef] 3. Ghosh, K.; Jones, B.H. Roadmap to Biodegradable Plastics—Current State and Research Needs. ACS Sustain. Chem. Eng. 2021, 9, 6170–6187. [CrossRef] 4. Liao, J.; Chen, Q. Biodegradable plastics in the air and soil environment: Low degradation rate and high microplastics formation. J. Hazard. Mater. 2021, 418, 126329. [CrossRef] 5. Šašinková, D.; Serbruyns, L.; Julinová, M.; FayyazBakhsh, A.; De Wilde, B.; Koutný, M. Evaluation of the biodegradation of polymeric materials in the freshwater environment—An attempt to prolong and accelerate the biodegradation experiment. Polym. Degrad. Stab. 2022, 203, 110085. [CrossRef] 6. Arockiam, A.J.; Subramanian, K.; Padmanabhan, R.; Selvaraj, R.; Bagal, D.K.; Rajesh, S. A review on PLA with different fillers used as a filament in 3D printing. Mater. Today Proc. 2021, 50, 2057–2064. [CrossRef] 7. Ko, E.; Kim, T.; Ahn, J.; Park, S.; Pak, S.; Kim, M.; Kim, H. Synergic Effect of HNT/oMMT Bi-filler System for the Mechanical Enhancement of PLA/PBAT Film. Fibers Polym. 2021, 22, 2163–2169. [CrossRef] 8. Shanmugam, V.; Rajendran, D.J.J.; Babu, K.; Rajendran, S.; Veerasimman, A.; Marimuthu, U.; Singh, S.; Das, O.; Neisiany, R.E.; Hedenqvist, M.S.; et al. The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing. Polym. Test. 2020, 93, 106925. [CrossRef] 9. Sedničková, M.; Pekařová, S.; Kucharczyk, P.; Bočkaj, J.; Janigová, I.; Kleinová, A.; Jochec-Mošková, D.; Omaníková, L.; Perd’ochová, D.; Koutný, M.; et al. Changes of physical properties of PLA-based blends during early stage of biodegradation in compost. Int. J. Biol. Macromol. 2018, 113, 434–442. [CrossRef] 10. Arrieta, M.P.; López, J.; Rayón, E.; Jiménez, A. Disintegrability under composting conditions of plasticized PLA&PHB blends. Polym. Degrad. Stab. 2014, 108, 307–318. [CrossRef] 11. Rahman, H.; Bhoi, P.R. An overview of non-biodegradable bioplastics. J. Clean. Prod. 2021, 294, 126218. [CrossRef] 12. Lee, P.-K.; Choi, B.-Y.; Kang, M.-J. Assessment of mobility and bio-availability of heavy metals in dry depositions of Asian dust and implications for environmental risk. Chemosphere 2015, 119, 1411–1421. [CrossRef] 13. Yu, Z.; Tang, J.; Liao, H.; Liu, X.; Zhou, P.; Chen, Z.; Rensing, C.; Zhou, S. The distinctive microbial community improves composting efficiency in a full-scale hyperthermophilic composting plant. Bioresour. Technol. 2018, 265, 146–154. [CrossRef] 14. Altieri, R.; Seggiani, M.; Esposito, A.; Cinelli, P.; Stanzione, V. Thermoplastic Blends Based on Poly(Butylene Succinate-co-Adipate) and Different Collagen Hydrolysates from Tanning Industry—II: Aerobic Biodegradation in Composting Medium. J. Polym. Environ. 2021, 29, 3375–3388. [CrossRef] 15. Mengqi, Z.; Shi, A.; Ajmal, M.; Ye, L.; Awais, M. Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting. Biomass Convers. Biorefinery 2021, 24, 1–24. [CrossRef] 16. Schulte, P.M. The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 2015, 218, 1856–1866. [CrossRef] 17. Iovino, R.; Zullo, R.; Rao, M.A.; Cassar, L.; Gianfreda, L. Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polym. Degrad. Stab. 2008, 93, 147–157. [CrossRef] 18. Apinya, T.; Sombatsompop, N.; Prapagdee, B. Selection of a Pseudonocardia sp. RM423 that accelerates the biodegradation of poly(lactic) acid in submerged cultures and in soil microcosms. Int. Biodeterior. Biodegrad. 2015, 99, 23–30. [CrossRef] 19. Narancic, T.; Verstichel, S.; Chaganti, S.R.; Morales-Gamez, L.; Kenny, S.T.; De Wilde, B.; Padamati, R.B.; O’Connor, K.E. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ. Sci. Technol. 2018, 52, 10441–10452. [CrossRef] 20. Accinelli, C.; Abbas, H.K.; Bruno, V.; Nissen, L.; Vicari, A.; Bellaloui, N.; Little, N.S.; Shier, W.T. Persistence in soil of microplastic films from ultra-thin compostable plastic bags and implications on soil Aspergillus flavus population. Waste Manag. 2020, 113, 312–318. [CrossRef] 21. Bandini, F.; Frache, A.; Ferrarini, A.; Taskin, E.; Cocconcelli, P.S.; Puglisi, E. Fate of Biodegradable Polymers Under Industrial Conditions for Anaerobic Digestion and Aerobic Composting of Food Waste. J. Polym. Environ. 2020, 28, 2539–2550. [CrossRef] 22. Koskimäki, J.J.; Kajula, M.; Hokkanen, J.; Ihantola, E.-L.; Kim, J.H.; Hautajärvi, H.; Hankala, E.; Suokas, M.; Pohjanen, J.; Podolich, O.; et al. Methyl-esterified 3-hydroxybutyrate oligomers protect bacteria from hydroxyl radicals. Nat. Chem. Biol. 2016, 12, 332–338. [CrossRef] [PubMed] 23. Opgenorth, P.H.; Korman, T.P.; Bowie, J.U. A synthetic biochemistry module for production of bio-based chemicals from glucose. Nat. Chem. Biol. 2016, 12, 393–395. [CrossRef] [PubMed] 24. Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M.D. Biodegradable polymers for food packaging: A review. Trends Food Sci. Technol. 2008, 19, 634–643. [CrossRef] 25. Šerá, J.; Serbruyns, L.; De Wilde, B.; Koutný, M. Accelerated biodegradation testing of slowly degradable polyesters in soil. Polym. Degrad. Stab. 2020, 171, 109031. [CrossRef] 26. Vaverková, M.; Adamcová, D.; Kotovicová, J.; Toman, F. Evaluation of biodegradability of plastics bags in composting conditions. Ecol. Chem. Eng. S 2014, 21, 45–57. [CrossRef] 27. Husárová, L.; Pekařová, S.; Stloukal, P.; Kucharzcyk, P.; Verney, V.; Commereuc, S.; Ramone, A.; Koutny, M. Identification of important abiotic and biotic factors in the biodegradation of poly(l-lactic acid). Int. J. Biol. Macromol. 2014, 71, 155–162. [CrossRef] 28. Stloukal, P.; Kalendova, A.; Mattausch, H.; Laske, S.; Holzer, C.; Koutny, M. The influence of a hydrolysis-inhibiting additive on the degradation and biodegradation of PLA and its nanocomposites. Polym. Test. 2015, 41, 124–132. [CrossRef] 29. Stloukal, P.; Pekařová, S.; Kalendova, A.; Mattausch, H.; Laske, S.; Holzer, C.; Chitu, L.; Bodner, S.; Maier, G.; Slouf, M.; et al. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process. Waste Manag. 2015, 42, 31–40. [CrossRef] 30. Jašo, V.; Glenn, G.; Klamczynski, A.; Petrović, Z.S. Biodegradability study of polylactic acid/ thermoplastic polyurethane blends. Polym. Test. 2015, 47, 1–3. [CrossRef] 31. Janigová, I.; Lacík, I.; Chodák, I. Thermal degradation of plasticized poly(3-hydroxybutyrate) investigated by DSC. Polym. Degrad. Stab. 2002, 77, 35–41. [CrossRef] 32. Špitalský, Z.; Lacík, I.; Lathová, E.; Janigová, I.; Chodák, I. Controlled degradation of polyhydroxybutyrate via alcoholysis with ethylene glycol or glycerol. Polym. Degrad. Stab. 2006, 91, 856–861. [CrossRef] | |
utb.fulltext.sponsorship | This research was funded by Internal Grant Agency with grant number IGA/FT/2022/006, Slovak Research and Development Agency with grant number APVV-20-0256 and APVV-20-0193, Operational Program Integrated Infra-structure within the project “Demand-driven research for the sustainable and innovative food”, Drive4SIFood 313011V336, co-financed by the European Regional Development Fund and project FCH-S-21-7553 of the Specific University Research Grant. | |
utb.wos.affiliation | [Fogasova, Maria; Danisova, Lucia; Medlenova, Elena; Hlavacikova, Slavka; Vanovcanova, Zuzana; Omanikova, Leona; Baco, Andrej; Horvath, Vojtech; Mikolajova, Maria; Feranc, Jozef; Bockaj, Jan; Plavec, Roderik; Alexy, Pavol; Repiska, Martina] Slovak Univ Technol Bratislava, Fac Chem & Food Technol, Inst Nat & Synthet Polymers, Radlinskeho 9, Bratislava 81237, Slovakia; [Figalla, Silvestr; Prikryl, Radek; Kontarova, Sona] Brno Univ Technol, Fac Chem, Inst Mat Sci, Purkynova 464-118, Brno 61200, Czech Republic; [Barekova, Anna; Slavikova, Martina] Slovak Univ Agr, Hortyculture & Landscape Engn Fac, Dept Landscape Engn, Hospodarska 7, Nitra 94976, Slovakia; [Koutny, Marek; Fayyazbakhsh, Ahmad; Kadlackova, Marketa] Tomas Bata Univ Zlin, Fac Technol, Dept Environm Protect Engn, Nad Ovcirnou III 3685, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava, 812 37, Slovakia; Institute of Materials Science, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno, 612 00, Czech Republic; Department of Landscape Engineering, Hortyculture and Landscape Engineering Faculty, Slovak University of Agriculture, Hospodárska 7, Nitra, 949 76, Slovakia; Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nad Ovčírnou III 3685, Zlín, 760 01, Czech Republic | |
utb.fulltext.projects | IGA/FT/2022/006 | |
utb.fulltext.projects | APVV-20-0256 | |
utb.fulltext.projects | APVV-20-0193 | |
utb.fulltext.projects | Drive4SIFood 313011V336 | |
utb.fulltext.projects | FCH-S-21-7553 | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.ou | Department of Environmental Protection Engineering | |
utb.fulltext.ou | Department of Environmental Protection Engineering | |
utb.fulltext.ou | Department of Environmental Protection Engineering |