Publikace UTB
Repozitář publikační činnosti UTB

Imprinting of different types of graphene oxide with metal cations

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Imprinting of different types of graphene oxide with metal cations en
dc.contributor.author Zabierowski, Piotr Wladyslaw
dc.contributor.author Osička, Josef
dc.contributor.author Šťastný, Josef
dc.contributor.author Filip, Jaroslav
dc.relation.ispartof Electrochimica Acta
dc.identifier.issn 0013-4686 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1873-3859 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 434
dc.type article
dc.language.iso en
dc.publisher Pergamon-Elsevier Science Ltd
dc.identifier.doi 10.1016/j.electacta.2022.141307
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0013468622014645
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0013468622014645/pdfft?md5=e9f0e3f3f56b0c87fed7da2b9f6b14dd&pid=1-s2.0-S0013468622014645-main.pdf
dc.subject graphene oxide en
dc.subject metal cations en
dc.subject electrochemical determination en
dc.subject toxic metals en
dc.subject ion imprinting en
dc.description.abstract It is known that graphene oxide (GO) particles bear negatively charged oxygen moieties which can interact with cations, what has been several times employed in fabrication of electrochemical sensors for metals. In this work, for the first time GO was treated with Cu2+, Cd2+ or Pb2+ cations in a way similar to the ion imprinting by simple incubation of the two components and the synthesized nanomaterials were then deposited on carbon electrode surface forming electrochemical sensors towards lead cations. It was found that simple filtration of GO is very efficient way for collection of GO particles that could be imprinted most efficiently in terms of high electrochemical response towards lead cations. Part of the success also lies in high redox potential of Cu2+ that turned to be the best choice for the GO imprinting. It was also proven that the electrodes modified with ion-imprinted GO could work as the sensors of Pb2+ in drop amount of solution as well as they provide stable response under flowthrough cell conditions suitable, for example, for online monitoring of water quality. en
utb.faculty Faculty of Technology
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1011182
utb.identifier.obdid 43883974
utb.identifier.scopus 2-s2.0-85139876760
utb.identifier.wok 000930651800007
utb.identifier.coden ELCAA
utb.source j-scopus
dc.date.accessioned 2022-10-26T13:40:45Z
dc.date.available 2022-10-26T13:40:45Z
dc.description.sponsorship Grantová Agentura České Republiky, GA ČR: GAČR 20–27735Y
dc.description.sponsorship Czech science foundation [GA.CR 20-27735Y]
dc.description.sponsorship Czech science foundation [GAC ?, R 20 - 27735Y]
utb.ou Department of Environmental Protection Engineering
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Zabierowski, Piotr Wladyslaw
utb.contributor.internalauthor Osička, Josef
utb.contributor.internalauthor Šťastný, Josef
utb.contributor.internalauthor Filip, Jaroslav
utb.fulltext.affiliation Piotr Zabierowski a,b, Josef Osička c, Josef Šťastný a, Jaroslav Filip a,* a Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovcirnou 3685, Zlin 760 01, Czech Republic b CNR – Istituto per i Processi Chimico-Fisici, Sezione di Bari, via E. Orabona, 4, Bari 70126, Italy c Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, Zlin 760 01, Czech Republic * Corresponding author. E-mail address: [email protected] (J. Filip).
utb.fulltext.dates Received 9 August 2022 Received in revised form 3 October 2022 Accepted 5 October 2022 Available online 6 October 2022
utb.fulltext.references [1] M.I. Ahamed, E. Lichtfouse, Water Pollution and remediation: Heavy metals, Springer, 2020. [2] B. Sarkar, Heavy Metals in the Environment, CRC press, 2002. [3] G.E. Zaikov, L.I. Weisfeld, E.M. Lisitsyn, S.A. Bekuzarova, Heavy Metals and Other Pollutants in the environment: Biological Aspects, CRC Press, 2017. [4] S.K. Sharma, Heavy Metals in water : presence, Removal and safety, Gld, Royal Society of Chemistry, 2014.gen.lib.rus.ec/book/index.php?md5=8ecadb210da3aac05a86947b62523e3f. [5] P.S. Rawat, S. Singh, A.A. Mahdi, S. Mehrotra, Environmental Lead exposure and its Correlation with Intelligence Quotient level in Children, J. Trace Elem. Med. Biol. (2022), 126981, https://doi.org/10.1016/j.jtemb.2022.126981. [6] J.A. Switzer, V.V. Rajasekharan, S. Boonsalee, E.A. Kulp, E.W. Bohannan, Evidence that Monochloramine Disinfectant Could Lead to Elevated Pb Levels in Drinking Water, Environ. Sci. Technol. 40 (2006) 3384–3387, https://doi.org/10.1021/es052411r. [7] V.V. Rajasekharan, B.N. Clark, S. Boonsalee, J.A. Switzer, Electrochemistry of Free Chlorine and Monochloramine and its Relevance to the Presence of Pb in Drinking Water, Environ. Sci. Technol. 41 (2007) 4252–4257, https://doi.org/10.1021/es062922t. [8] A. Turner, M. Filella, Lead in plastics - Recycling of legacy material and appropriateness of current regulations, J. Hazard. Mater. 404 (2021), 124131, https://doi.org/10.1016/j.jhazmat.2020.124131. [9] A. Turner, Black plastics: linear and circular economies, hazardous additives and marine pollution, Environ. Int. 117 (2018) 308–318, https://doi.org/10.1016/j.envint.2018.04.036. [10] B.P. Lanphear, Low-level toxicity of chemicals: no acceptable levels? {PLOS} Biol 15 (2017) https://doi.org/10.1371/journal.pbio.2003066 e2003066. [11] G. Li, Y. Bae, A. Mishrra, B. Shi, D.E. Giammar, Effect of Aluminum on Lead Release to Drinking Water from Scales of Corrosion Products, Environ. Sci. Technol. 54 (2020) 6142–6151, https://doi.org/10.1021/acs.est.0c00738. [12] M. Faisal, Q. Saquib, A.A. Alatar, A.A. Al-Khedhairy, Cellular and Molecular Phytotoxicity of Heavy Metals, Springer, 2020. [13] I.C. Dike, C.N. Onwurah, U. Uzodinma, I.N. Onwurah, Evaluation of Pb concentrations in selected vegetables and portable drinking water, and intelligent quotients of school children in Ishiagu - a Pb mining community: health risk assessment using predictive modelling, Environ. Monit. Assess. 192 (2020) 1–13, https://doi.org/10.1007/s10661-020-8071-2. [14] K.V. Baskaran, G. Blanchet-Chouinard, D. Larivi\a`ere, Attogram measurement of 210Pb in drinking water by ICP-MS/MS, J. Anal. At. Spectrom. 33 (2018) 603–612, https://doi.org/10.1039/c7ja00408g. [15] C. Laghlimi, Y. Ziat, A. Moutcine, M. Hammi, Z. Zarhri, R. Maallah, O. Ifguis, A. Chtaini, Analysis of Pb(II), Cu(II) and Co(II) in drinking water by a new carbon paste electrode modified with an organic molecule, Chem. Data Collect. 29 (2020), 100496, https://doi.org/10.1016/j.cdc.2020.100496. [16] R. Pauliukaite, R. Metelka, I. Švancara, A. Krolická, A. Bobrowski, K. Vytřas, E. Norkus, K. Kalcher, Carbon paste electrodes modified with Bi 2 O 3 as sensors for the determination of Cd and Pb, Anal. Bioanal. Chem. 374 (2002) 1155–1158, https://doi.org/10.1007/s00216-002-1569-3. [17] J. Wang, Stripping Analysis at Bismuth Electrodes: a Review, Electroanalysis 17 (2005) 1341–1346, https://doi.org/10.1002/elan.200403270. [18] V. Vyskočil, J. Barek, Mercury Electrodes–Possibilities and Limitations in Environmental Electroanalysis, Crit. Rev. Anal. Chem. 39 (2009) 173–188, https:// doi.org/10.1080/10408340903011820. [19] J.H. Christie, J.A. Turner, R.A. Osteryoung, Square wave voltammetry at the dropping mercury electrode: theory, Anal. Chem. 49 (1977) 1899–1903, https://doi.org/10.1021/ac50021a008. [20] F. Arduini, J.Q. Calvo, G. Palleschi, D. Moscone, A. Amine, Bismuth-modified electrodes for lead detection, TrAC Trends Anal. Chem. 29 (2010) 1295–1304, https://doi.org/10.1016/j.trac.2010.08.003. [21] J.P. Rourke, P.A. Pandey, J.J. Moore, M. Bates, I.A. Kinloch, R.J. Young, N. R. Wilson, The Real Graphene Oxide Revealed: stripping the Oxidative Debris from the Graphene-like Sheets, Angew. Chemie Int. Ed. 50 (2011) 3173–3177, https://doi.org/10.1002/anie.201007520. [22] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39 (2010) 228–240, https://doi.org/10.1039/B917103G. [23] S.Z.N. Ahmad, W.N. Wan Salleh, A.F. Ismail, N. Yusof, M.Z. Mohd Yusop, F. Aziz, Adsorptive removal of heavy metal ions using graphene-based nanomaterials: toxicity, roles of functional groups and mechanisms, Chemosphere 248 (2020), 126008, https://doi.org/10.1016/j.chemosphere.2020.126008. [24] N. Nirmala, V. Shriniti, K. Aasresha, J. Arun, K.P. Gopinath, S.S. Dawn, A. Sheeladevi, P. Priyadharsini, K. Birindhadevi, N.T.L. Chi, A. Pugazhendhi, Removal of toxic metals from wastewater environment by graphene-based composites: a review on isotherm and kinetic models, recent trends, challenges and future directions, Sci. Total Environ. 840 (2022), 156564, https://doi.org/10.1016/j.scitotenv.2022.156564. [25] R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, A. Gagor, B. Feist, R. Wrzalik, Adsorption of divalent metal ions from aqueous solutions using graphene oxide, Dalt. Trans. 42 (2013) 5682–5689, https://doi.org/10.1039/C3DT33097D. [26] H. İncebay, Z. Yazıcıgil, Effect of different copper salts on the electrochemical determination of Cu(II) by the application of the graphene oxide-modified glassy carbon electrode, Surfaces and Interfaces. 9 (2017) 160–166. 10.1016/j.surfin.2017.09.004. [27] D.A.C. Brownson, A.C. Lacombe, M. Gómez-Mingot, C.E. Banks, Graphene oxide gives rise to unique and intriguing voltammetry, RSC Adv 2 (2012) 665–668, https://doi.org/10.1039/C1RA00743B. [28] J. Filip, J. Tkac, Effective bioelectrocatalysis of bilirubin oxidase on electrochemically reduced graphene oxide, Electrochem. Commun. 49 (2014) 70–74, https://doi.org/10.1016/j.elecom.2014.10.012. [29] S. Pei, H.-.M. Cheng, The reduction of graphene oxide, Carbon N. Y. 50 (2012) 3210–3228, https://doi.org/10.1016/j.carbon.2011.11.010. [30] G.K. Ramesha, S. Sampath, In-situ formation of graphene–lead oxide composite and its use in trace arsenic detection, Sensors Actuators B Chem 160 (2011) 306–311, https://doi.org/10.1016/j.snb.2011.07.053. [31] Y. Zuo, J. Xu, X. Zhu, X. Duan, L. Lu, Y. Yu, Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review, Microchim. Acta. 186 (2019) 171, https://doi.org/10.1007/s00604-019-3248-5. [32] J.-.M. Jian, Y.-.Y. Liu, Y.-.L. Zhang, X.-.S. Guo, Q. Cai, Fast and Sensitive Detection of Pb2+ in Foods Using Disposable Screen-Printed Electrode Modified by Reduced Graphene Oxide, Sensors (2013) 13, https://doi.org/10.3390/s131013063. [33] J.G.S. Moo, B. Khezri, R.D. Webster, M. Pumera, Graphene Oxides Prepared by Hummers’, Hofmann’s, and Staudenmaier’s Methods: dramatic Influences on Heavy-Metal-Ion Adsorption, ChemPhysChem 15 (2014) 2922–2929, https://doi.org/10.1002/cphc.201402279. [34] P. Feicht, J. Biskupek, T.E. Gorelik, J. Renner, C.E. Halbig, M. Maranska, F. Puchtler, U. Kaiser, S. Eigler, Brodie’s or Hummers’ Method: oxidation Conditions Determine the Structure of Graphene Oxide, Chem. - A Eur. J. 25 (2019) 8955–8959, https://doi.org/10.1002/chem.201901499. [35] W. Peng, H. Li, Y. Liu, S. Song, Comparison of Pb(II) adsorption onto graphene oxide prepared from natural graphites: diagramming the Pb(II) adsorption sites, Appl. Surf. Sci. 364 (2016) 620–627, https://doi.org/10.1016/j.apsusc.2015.12.208. [36] C. Zhang, D.M. Dabbs, L.-.M. Liu, I.A. Aksay, R. Car, A. Selloni, Combined Effects of Functional Groups, Lattice Defects, and Edges in the Infrared Spectra of Graphene Oxide, J. Phys. Chem. C. 119 (2015) 18167–18176, https://doi.org/10.1021/acs.jpcc.5b02727. [37] Y. Sheng, Y. Zhou, C. Tang, X. Cheng, C. Zhang, Redispersible Reduced Graphene Oxide Prepared in a Gradient Solvent System, Nanomater (2022) 12, https://doi.org/10.3390/nano12121982. [38] Y. Shen, S. Zhang, Y. Sun, C. Hai, X. Li, J. Zeng, X. Ren, Y. Zhou, Structure and Property Evolution of Graphene Oxide Sheets during Low-Temperature Reduction on a Solid Substrate, J. Phys. Chem. C. 124 (2020) 14371–14379, https://doi.org/10.1021/acs.jpcc.0c03499. [39] S. You, S.M. Luzan, T. Szabó, A.V. Talyzin, Effect of synthesis method on solvation and exfoliation of graphite oxide, Carbon N. Y. 52 (2013) 171–180, https://doi.org/10.1016/j.carbon.2012.09.018. [40] H. Wang, J.T. Robinson, X. Li, H. Dai, Solvothermal Reduction of Chemically Exfoliated Graphene Sheets, J. Am. Chem. Soc. 131 (2009) 9910–9911, https://doi.org/10.1021/ja904251p. [41] Z. Li, T. Huang, W. Gao, Z. Xu, D. Chang, C. Zhang, C. Gao, Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors, ACS Nano 11 (2017) 11056–11065, https://doi.org/10.1021/acsnano.7b05092. [42] B. Konkena, S. Vasudevan, Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pKa Measurements, J. Phys. Chem. Lett. 3 (2012) 867–872, https://doi.org/10.1021/jz300236w. [43] H. Tang, S. Zhang, T. Huang, J. Zhang, B. Xing, Mechanisms of the Aggregation of Graphene Oxide at High pH: roles of Oxidation Debris and Metal Adsorption, Environ. Sci. Technol. 55 (2021) 14639–14648, https://doi.org/10.1021/acs.est.1c04463. [44] M. Nováček, O. Jankovský, J. Luxa, D. Sedmidubský, M. Pumera, V. Fila, M. Lhotka, K. Klímová, S. Matějková, Z. Sofer, Tuning of graphene oxide composition by multiple oxidations for carbon dioxide storage and capture of toxic metals, J. Mater. Chem. A. 5 (2017) 2739–2748, https://doi.org/10.1039/C6TA03631G. [45] D.F. Tibbetts, J. Davis, R.G. Compton, Sonoelectroanalytical detection of lead at a bare copper electrode, Fresenius. J. Anal. Chem. 368 (2000) 412–414, https://doi.org/10.1007/s002160000523. [46] W. Xiong, L. Zhou, S. Liu, Development of gold-doped carbon foams as a sensitive electrochemical sensor for simultaneous determination of Pb (II) and Cu (II), Chem. Eng. J. 284 (2016) 650–656, https://doi.org/10.1016/j.cej.2015.09.013. [47] Z. Zhong, A. Ali, R. Jamal, R. Simayi, L. Xiang, S. Ding, T. Abdiryim, Poly(EDOTpyridine-EDOT) and poly(EDOT-pyridazine-EDOT) hollow nanosphere materials for the electrochemical detection of Pb2+ and Cu2+, J. Electroanal. Chem. 822 (2018) 112–122, https://doi.org/10.1016/j.jelechem.2018.05.022. [48] J. Sotolářová, Š. Vinter, J. Filip, Cellulose derivatives crosslinked by citric acid on electrode surface as a heavy metal absorption/sensing matrix, Colloids Surfaces A Physicochem. Eng. Asp. 628 (2021), 127242, https://doi.org/10.1016/j.colsurfa.2021.127242. [49] J. Bujes-Garrido, D. Izquierdo-Bote, A. Heras, A. Colina, M.J. Arcos-Martínez, Determination of halides using Ag nanoparticles-modified disposable electrodes. A first approach to a wearable sensor for quantification of chloride ions, Anal. Chim. Acta. 1012 (2018) 42–48, https://doi.org/10.1016/j.aca.2018.01.063. [50] M. Yu, P. Liu, S. Zhang, J. Liu, J. An, S. Li, Preparation of graphene–Ag composites and their application for electrochemical detection of chloride, Mater. Res. Bull. 47 (2012) 3206–3210, https://doi.org/10.1016/j.materresbull.2012.08.013. [51] J. Filip, P. Wechsler, J. Stastny, V. Malkova, A. Minarik, S. Vinter, J. Osicka, Simplified synthesis of silver nanoparticles on graphene oxide and their applications in electrocatalysis, Nanotechnology 32 (2020) 25502, https://doi.org/10.1088/1361-6528/abb8a4. [52] R.D. Martínez-Orozco, H.C. Rosu, S.-.W. Lee, V. Rodríguez-González, Understanding the adsorptive and photoactivity properties of Ag-graphene oxide nanocomposites, J. Hazard. Mater. 263 (2013) 52–60, https://doi.org/10.1016/j.jhazmat.2013.07.056. [53] E.S. Orth, J.G.L. Ferreira, J.E.S. Fonsaca, S.F. Blaskievicz, S.H. Domingues, A. Dasgupta, M. Terrones, A.J.G. Zarbin, pKa determination of graphene-like materials: validating chemical functionalization, J. Colloid Interface Sci. 467 (2016) 239–244, https://doi.org/10.1016/j.jcis.2016.01.013. [54] Y. Gao, Y. Qin, M. Zhang, L. Xu, Z. Yang, Z. Xu, Y. Wang, M. Men, Revealing the role of oxygen-containing functional groups on graphene oxide for the highly efficient adsorption of thorium ions, J. Hazard. Mater. 436 (2022), 129148, https://doi.org/10.1016/j.jhazmat.2022.129148. [55] S. Park, K.-.S. Lee, G. Bozoklu, W. Cai, S.T. Nguyen, R.S. Ruoff, Graphene Oxide Papers Modified by Divalent Ions—Enhancing Mechanical Properties via Chemical Cross-Linking, ACS Nano 2 (2008) 572–578, https://doi.org/10.1021/nn700349a. [56] J. Filip, A. Andicsová-Eckstein, A. Vikartovská, J. Tkac, Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density, Biosens. Bioelectron. 89 (2017) 384–389, https://doi.org/10.1016/j.bios.2016.06.006. [57] X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie, X. Wang, Synthesis of “Clean” and WellDispersive Pd Nanoparticles with Excellent Electrocatalytic Property on Graphene Oxide, J. Am. Chem. Soc. 133 (2011) 3693–3695, https://doi.org/10.1021/ja110313d. [58] K. Spilarewicz-Stanek, A. Kisielewska, J. Ginter, K. Bałuszyńska, I. Piwoński, Elucidation of the function of oxygen moieties on graphene oxide and reduced graphene oxide in the nucleation and growth of silver nanoparticles, RSC Adv 6 (2016) 60056–60067, https://doi.org/10.1039/C6RA10483E. [59] H.C. Choi, M. Shim, S. Bangsaruntip, H. Dai, Spontaneous Reduction of Metal Ions on the Sidewalls of Carbon Nanotubes, J. Am. Chem. Soc. 124 (2002) 9058–9059, https://doi.org/10.1021/ja026824t. [60] Z.M. Redha, S.J. Baldock, P.R. Fielden, N.J. Goddard, B.J.T. Brown, B.G. D. Haggett, R. Andres, B.J. Birch, Hybrid Microfluidic Sensors Fabricated by Screen Printing and Injection Molding for Electrochemical and Electrochemiluminescence Detection, Electroanalysis 21 (2009) 422–430, https://doi.org/10.1002/elan.200804415. [61] Y. Sun, W. Zhang, H. Yu, C. Hou, D. Li, Y. Zhang, Y. Liu, Controlled synthesis various shapes Fe3O4 decorated reduced graphene oxide applied in the electrochemical detection, J. Alloys Compd. 638 (2015) 182–187, https://doi.org/10.1016/j.jallcom.2015.03.061. [62] S. Muralikrishna, D.H. Nagaraju, R.G. Balakrishna, W. Surareungchai, T. Ramakrishnappa, A.B. Shivanandareddy, Hydrogels of polyaniline with graphene oxide for highly sensitive electrochemical determination of lead ions, Anal. Chim. Acta. 990 (2017) 67–77, https://doi.org/10.1016/j.aca.2017.09.008. [63] Z. Wang, L. Li, E. Liu, Graphene ultrathin film electrodes modified with bismuth nanoparticles and polyaniline porous layers for detection of lead and cadmium ions in acetate buffer solutions, Thin Solid Films 544 (2013) 362–367, https://doi.org/10.1016/j.tsf.2013.02.098. [64] E. Herrero, L.J. Buller, H.D. Abruna, ˜ Underpotential Deposition at Single Crystal Surfaces of Au, Pt, Ag and Other Materials, Chem. Rev. 101 (2001) 1897–1930, https://doi.org/10.1021/cr9600363. [65] R. Seenivasan, W.-.J. Chang, S. Gunasekaran, Highly Sensitive Detection and Removal of Lead Ions in Water Using Cysteine-Functionalized Graphene Oxide/Polypyrrole Nanocomposite Film Electrode, ACS Appl. Mater. Interfaces. 7 (2015) 15935–15943, https://doi.org/10.1021/acsami.5b03904. [66] A. Mandil, L. Idrissi, A. Amine, Stripping voltammetric determination of mercury (II) and lead(II) using screen-printed electrodes modified with gold films, and metal ion preconcentration with thiol-modified magnetic particles, Microchim. Acta. 170 (2010) 299–305, https://doi.org/10.1007/s00604-010-0329-x. [67] W. Zhang, Y. Xu, X. Zou, A ZnO–RGO-modified electrode coupled to microwave digestion for the determination of trace cadmium and lead in six species fish, Anal. Methods. 9 (2017) 4418–4424, https://doi.org/10.1039/C7AY01574G.
utb.fulltext.sponsorship This work was supported by Czech science foundation [grant number GAČR 20–27735Y].
utb.wos.affiliation [Zabierowski, Piotr; Stastny, Josef; Filip, Jaroslav] Tomas Bata Univ Zlin, Fac Technol, Dept Environm Protect Engn, Nad Ovcirnou 3685, Zlin 76001, Czech Republic; [Zabierowski, Piotr] CNR, Sez Bari, Ist Proc Chim Fis, Via E Orabona 4, I-70126 Bari, Italy; [Osicka, Josef] Tomas Bata Univ Zlin, Ctr Polymer Syst, Trida Tomase Bati 5678, Zlin 76001, Czech Republic
utb.scopus.affiliation Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovcirnou 3685, Zlin, 760 01, Czech Republic; CNR – Istituto per i Processi Chimico-Fisici, Sezione di Bari, via E. Orabona, 4, Bari, 70126, Italy; Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, Zlin, 760 01, Czech Republic
utb.fulltext.projects GAČR 20–27735Y
utb.fulltext.faculty Faculty of Technology
utb.fulltext.ou Department of Environmental Protection Engineering
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam