Kontaktujte nás | Jazyk: čeština English
dc.title | Fuzzy multiset finite automata with output | en |
dc.contributor.author | Martinek, Pavel | |
dc.relation.ispartof | Soft Computing | |
dc.identifier.issn | 1432-7643 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.issn | 1433-7479 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.identifier.doi | 10.1007/s00500-022-07274-7 | |
dc.relation.uri | https://link.springer.com/article/10.1007/s00500-022-07274-7 | |
dc.relation.uri | https://link.springer.com/content/pdf/10.1007/s00500-022-07274-7.pdf | |
dc.subject | Mealy-like fuzzy multiset finite automata | en |
dc.subject | Moore-like fuzzy multiset finite automata | en |
dc.subject | compact fuzzy multiset finite automata | en |
dc.subject | reduced fuzzy multiset finite automata | en |
dc.subject | reduced fuzzy finite automata | en |
dc.description.abstract | Fuzzy multiset finite automata with output represent fuzzy version of finite automata (with output) working over multisets. This paper introduces Mealy-like, Moore-like, and compact fuzzy multiset finite automata. Their mutual transformations are described to prove their equivalent behaviours. Furthermore, various variants of reduced fuzzy multiset finite automata are studied where the reductions are directed to decrease the number of fuzzy components (like fuzzy initial distribution, fuzzy transition relation, or fuzzy output relation) of the fuzzy automata. The research confirmed that all fuzzy multiset finite automata with output can be reduced without change of their behaviours. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011170 | |
utb.identifier.obdid | 43884070 | |
utb.identifier.scopus | 2-s2.0-85139193788 | |
utb.identifier.wok | 000865226000003 | |
utb.source | j-scopus | |
dc.date.accessioned | 2022-10-18T12:15:17Z | |
dc.date.available | 2022-10-18T12:15:17Z | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Department of Mathematics | |
utb.contributor.internalauthor | Martinek, Pavel | |
utb.fulltext.affiliation | Pavel Martinek1 1 Department of Mathematics, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic ✉ Pavel Martinek [email protected] | |
utb.fulltext.dates | Accepted: 6 June 2022 Published online: 03 October 2022 | |
utb.fulltext.references | Alexandru A, Ciobanu G (2016) Finitely supported mathematics: an introduction. Springer International Publishing Bělohlávek R (2002) Determinism and fuzzy automata. Inf Sci 143:205–209 Berry G, Boudol G (1992) The chemical abstract machine. Theor Comput Sci 96:217–248 Blizard WD (1989) Multiset theory. Notre Dame J Form Log 30:36–66 Blizard WD (1991) The development of multiset theory. Mod Log 1(4):319–352 Ciobanu G, Gontineac M (2006) Mealy multiset automata. Int J Found Comput Sci 17(1):111–126 Csuhaj-Varjú E, Martín-Vide C, Mitrana V (2001) Multiset automata. In: Calude CS, Păun G, Rozenberg G, Salomaa A (eds) Multiset processing — mathematical, computer science, and molecular computing points of view. Lecture notes in computer science 2235:69–83. Springer, Berlin Droste M, Kuich W, Vogler H (eds) (2009) Handbook of weighted automata. Springer-Verlag, Berlin Dubois D, Prade H (1980) Fuzzy sets and systems. Academic Press, San Diego Gruska J (1997) Foundations of computing. International Thomson Computer Press, Boston Hopcroft JE, Motwani R, Ullman JD (2003) Introduction to automata theory, languages, and computation, 2nd ed. Pearson AddisonWesley, Upper Saddle River Ignjatović J, Ćirić M, Jančić Z (2018) Weighted finite automata with output. Soft Comput 22:1121–1138 Kudlek M, Martín-Vide C, Păun G (2001) Toward a formal macroset theory. In: Calude CS, Păun G, Rozenberg G, Salomaa A (eds) Multiset processing — mathematical, computer science, and molecular computing points of view. Lecture notes in computer science 2235:123–133. Springer, Berlin Kudlek M, Totzke P, Zetsche G (2009a) Multiset pushdown automata. Fundam Inf 93:221–233 Kudlek M, Totzke P, Zetsche G (2009b) Properties of multiset language classes defined by multiset pushdown automata. Fundam Inf 93:235–244 Li Y, Pedrycz W (2005) Fuzzy finite automata and fuzzy regular expressions with membership values in lattice-ordered monoids. Fuzzy Sets Syst 156:68–92 Li Y, Pedrycz W (2006) The equivalence between fuzzy Mealy and fuzzy Moore machines. Soft Comput 10:953–959 Martinek P (2016) A simplified form of fuzzy multiset finite automata. In: Silhavy R, Senkerik R, Kominkova Oplatkova Z, Silhavy P, Prokopova Z (eds) Advances in Intelligent Systems and Computing 464:469–476. Springer, Berlin Mordeson JN, Malik DS (2002) Fuzzy automata and languages: theory and applications. Chapman and Hall/CRC, Boca Raton Păun G (2002) Membrane computing: an introduction. Springer-Verlag, Berlin Păun G, Rozenberg G, Salomaa A (1998) DNA computing: new computing paradigms. Springer-Verlag, Heidelberg Santos ES (1969) Maximin sequential-like machines and chains. Math Syst Theory 3:300–309 Singh D, Ibrahim AM, Yohanna T, Singh JN (2007) An overview of the applications of multisets. Novi Sad J Math 37(2):73–92 Sipser M (2006) Introduction to the theory of computation, 2nd ed. Thomson Course Technology, Boston Stamenković A, Ćirić M (2012) Construction of fuzzy automata from fuzzy regular expressions. Fuzzy Sets Syst 199:1–27 | |
utb.fulltext.sponsorship | No fund was used for the research. | |
utb.wos.affiliation | [Martinek, Pavel] Tomas Bata Univ Zlin, Dept Math, Nam TG Masaryka 5555, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Department of Mathematics, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, Zlín, 760 01, Czech Republic | |
utb.fulltext.projects | - | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.ou | Department of Mathematics |