Kontaktujte nás | Jazyk: čeština English
dc.title | Evaluation of the flexural rigidity of underground tanks manufactured by rotomolding | en |
dc.contributor.author | Šuba, Oldřich | |
dc.contributor.author | Bílek, Ondřej | |
dc.contributor.author | Kubišová, Milena | |
dc.contributor.author | Pata, Vladimír | |
dc.contributor.author | Měřínská, Dagmar | |
dc.relation.ispartof | Applied Sciences-Basel | |
dc.identifier.issn | 2076-3417 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022 | |
utb.relation.volume | 12 | |
utb.relation.issue | 18 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | MDPI | |
dc.identifier.doi | 10.3390/app12189276 | |
dc.relation.uri | https://www.mdpi.com/2076-3417/12/18/9276 | |
dc.relation.uri | https://www.mdpi.com/2076-3417/12/18/9276/pdf?version=1663570983 | |
dc.subject | rotomolding | en |
dc.subject | stability | en |
dc.subject | underground tank | en |
dc.subject | warpage | en |
dc.subject | sandwich structure | en |
dc.subject | flexural rigidity | en |
dc.description.abstract | This study focuses on the flexural properties of the layered wall structures of plastic tanks produced by rotational molding technology. The aim was to assess the possibility of replacing the homogeneous walls of rotationally cast large-volume underground tanks with structural walls for stability and warpage prevention. The possibilities of material saving by combining lightweight and non-lightweight tank wall layers were investigated. By applying the engineering theory of bending inhomogeneous layered walls, the flexural rigidity values of the walls of the tanks of different structures were determined. The values of the flexural rigidity of the tank wall samples produced by rotomolding technology were determined experimentally. Moreover, a comparison of the calculated and experimentally determined flexural rigidity values of the layered walls and optimization of these structures was carried out. In the case under study, it was theoretically and experimentally confirmed that the optimum ratio of compact layer thickness versus total wall thickness is given by the resulting value: t(1OPT) = 0.189 h. | en |
utb.faculty | Faculty of Technology | |
dc.identifier.uri | http://hdl.handle.net/10563/1011147 | |
utb.identifier.obdid | 43884004 | |
utb.identifier.scopus | 2-s2.0-85138630330 | |
utb.identifier.wok | 000858036000001 | |
utb.source | J-wok | |
dc.date.accessioned | 2022-10-05T13:13:10Z | |
dc.date.available | 2022-10-05T13:13:10Z | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Department of Production Engineering | |
utb.contributor.internalauthor | Šuba, Oldřich | |
utb.contributor.internalauthor | Bílek, Ondřej | |
utb.contributor.internalauthor | Kubišová, Milena | |
utb.contributor.internalauthor | Pata, Vladimír | |
utb.contributor.internalauthor | Měřínská, Dagmar | |
utb.fulltext.affiliation | Oldřich Šuba, Ondřej Bílek * https://orcid.org/0000-0001-9581-3423 , Milena Kubišová https://orcid.org/0000-0002-8472-0472 , Vladimír Pata and Dagmar Měřínská https://orcid.org/0000-0001-7589-7770 Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 76001 Zlín, Czech Republic * Correspondence: [email protected]; Tel.: +420-57-603-5227 | |
utb.fulltext.dates | Received: 31 August 2022 Revised: 12 September 2022 Accepted: 14 September 2022 Published: 15 September 2022 | |
utb.fulltext.references | 1. Černohlávek, V.; Štěrba, J.; Svoboda, M.; Zdráhal, T.; Suszyński, M.; Chalupa, M.; Krobot, Z. Verification of the Safety of Storing a Pair of Pressure Vessels. Manuf. Technol. 2022, 21, 762–773. http://doi.org/10.21062/mft.2021.097 2. Daghighi, S.; Weaver, P.M. Three-dimensional effects influencing failure in bend-free, variable stiffness composite pressure vessels. Compos. Struct. 2021, 262, 113346. http://doi.org/10.1016/j.compstruct.2020.113346 3. Margolis, J.M. Engineering Thermoplastics: Properties and Applications; CRC Press: Boca Raton, FL, USA, 2020. 4. Shaker, R.; Rodrigue, D. Rotomolding of Thermoplastic Elastomers Based on Low-Density Polyethylene and Recycled Natural Rubber. Appl. Sci. 2019, 9, 5430. http://doi.org/10.3390/app9245430 5. Crawford, R.J.; Throne, J.L. Rotational Molding Technology; William Andrew Publishing: New York, NY, USA, 2001. 6. Novo, A.V.; Bayon, J.R.; Castro-Fresno, D.; Rodriguez-Hernandez, J. Review of Seasonal Heat Storage in Large Basins: Water Tanks and Gravel–Water Pits. Appl. Energy 2010, 87, 390–397. http://doi.org/10.1016/j.apenergy.2009.06.033 7. Tkac, J.; Samborski, S.; Monkova, K.; Debski, H. Analysis of mechanical properties of a lattice structure produced with the additive technology. Comp. Struct. 2020, 242, 112138. http://doi.org/10.1016/j.compstruct.2020.112138 8. Xue, B.; Peng, Y.X.; Ren, S.F.; Liu, N.N.; Zhang, Q. Investigation of impact resistance performance of pyramid lattice sandwich structure based on SPH-FEM. Comp. Struct. 2021, 261, 113561. http://doi.org/10.1016/j.compstruct.2021.113561 9. Saifullah, A.; Wang, L.; Barouni, A.; Giasin, K.; Lupton, C.; Jiang, C.; Zhang, Z.; Quaratino, A.; Dhakal, H.N. Low Velocity Impact (LVI) and Flexure-after-Impact (FAI) Behaviours of Rotationally Moulded Sandwich Structures. J. Mater. Res. Technol. 2021, 15, 3915–3927. http://doi.org/10.1016/j.jmrt.2021.10.030 10. Błachut, J.; Magnucki, K. Strength, stability, and optimization of pressure vessels: Review of selected problems. Appl. Mech. Rev. 2008, 61, 060801. http://doi.org/10.1115/1.2978080 11. Renhuai, L.; Jianghong, X. Development of nonlinear mechanics for laminated composite plates and shells. Chin. J. Theor. Appl. Mech. 2017, 49, 487–506. http://doi.org/10.6052/0459-1879-16-253 12. Carrera, E.; Soave, M. Use of functionally graded material layers in a two-layered pressure vessel. J. Press. Vessel Technol. 2011, 133, 051202. http://doi.org/10.1115/1.4003458 13. Magnucki, K.; Stasiewicz, P. Critical sizes of ground and underground horizontal cylindrical tanks. Thin-Walled Struct. 2003, 41, 317–327. http://doi.org/10.1016/S0263-8231(02)00097-6 14. Brar, G.S.; Hari, Y.; Williams, D.K. Calculation of working pressure for cylindrical vessel under external pressure. In Proceedings of the ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference, Bellevue, Washington, DC, USA, 18–22 July 2010. http://doi.org/10.1115/PVP2010-25173 15. Subbaiah, T.; Vijetha, P.; Marandi, B.; Sanjay, K.; Minakshi, M. Ionic Mass Transfer at Point Electrodes Located at Cathode Support Plate in an Electrorefining Cell in Presence of Rectangular Turbulent Promoters. Sustainability 2022, 14, 880. http://doi.org/10.3390/su14020880 16. Banghai, J.; Zhibin, L.; Fangyun, L. Failure mechanism of sandwich beams subjected to three-point bending. Comp. Struct. 2015, 133, 739–745. http://doi.org/10.1016/j.compstruct.2015.07.056 17. Behravan, A.; Dejong, M.M.; Brand, A.S. Laboratory Study on Non-Destructive Evaluation of Polyethylene Liquid Storage Tanks by Thermographic and Ultrasonic Methods. CivilEng 2021, 2, 823–851. http://doi.org/10.3390/civileng2040045 18. Yang, L.; Chen, Z.; Chen, F.; Guo, W.; Cao, G. Buckling of cylindrical shells with general axisymmetric thickness imperfections under external pressure. Eur. J. Mech. A/Solids 2013, 38, 90–99. http://doi.org/10.1016/j.euromechsol.2012.09.006 19. Yang, L.; Luo, Y.; Qiu, T.; Zheng, H.; Zeng, P. A novel analytical study on the buckling of cylindrical shells subjected to arbitrarily distributed external pressure. Eur. J. Mech. A/Solids 2022, 91, 104406. http://doi.org/10.1016/j.euromechsol.2021.104406 20. Jiroutova, D. Methodology of Experimental Analysis of Long-Term Monitoring of Sandwich Composite Structure by Fibre-Optic Strain Gauges. Manuf. Technol. 2016, 16, 512–518. http://doi.org/10.21062/ujep/x.2016/a/1213-2489/MT/16/3/512 21. Beall, G.L. Rotational Molding: Design, Materials, Tooling, and Processing; Hanser: Munich, Germany, 1998. 22. Scott, D. Products and Applications—Composite and Thermoplastic Tanks, Silos and Other Vessels. Adv. Mater. Water Handl. 2000, 175–216. http://doi.org/10.1016/b978-185617350-6/50009-8 23. Beňo, P.; Kozak, D.; Konjatić, P. Optimization of thin-walled constructions in CAE system ANSYS. Tech. Gaz. 2014, 21, 1051–1055. 24. Mešić, E.; Muratović, E.; Redžepagić-Vražalica, L.; Pervan, N.; Muminović, A.J.; Delić, M.; Glušac, M. Experimental & FEM analysis of orthodontic mini-implant design on primary stability. Appl. Sci. 2021, 11, 5461. http://doi.org/10.3390/app11125461 25. Regassa, Y.; Gari, J.; Lemu, H.G. Composite Overwrapped Pressure Vessel Design Optimization Using Numerical Method. J. Compos. Sci. 2022, 6, 229. http://doi.org/10.3390/jcs6080229 | |
utb.fulltext.sponsorship | This research received no external funding. | |
utb.wos.affiliation | [Suba, Oldrich; Bilek, Ondrej; Kubisova, Milena; Pata, Vladimir; Merinska, Dagmar] Tomas Bata Univ Zlin, Fac Technol, Dept Prod Engn, Vavreckova 5669, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, Zlín, 76001, Czech Republic | |
utb.fulltext.projects | - | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.ou | Department of Production Engineering |