Publikace UTB
Repozitář publikační činnosti UTB

Constitutive models that exceed the fitting capabilities of the Herschel–Bulkley model: A case study for shear magnetorheology

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Constitutive models that exceed the fitting capabilities of the Herschel–Bulkley model: A case study for shear magnetorheology en
dc.contributor.author Cvek, Martin
dc.relation.ispartof Mechanics of Materials
dc.identifier.issn 0167-6636 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1872-7743 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 173
dc.type article
dc.language.iso en
dc.publisher Elsevier B.V.
dc.identifier.doi 10.1016/j.mechmat.2022.104445
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0167663622002125
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0167663622002125/pdfft
dc.subject Carreau model en
dc.subject Cross model en
dc.subject Herschel-bulkley en
dc.subject modelling en
dc.subject rheology en
dc.subject viscoplasticity en
dc.subject yield stress en
dc.description.abstract A significant proportion of non-Newtonian fluids exhibits the phenomena of shear-thinning and yield stress. The Herschel-Bulkley model is probably the most widespread equation to describe the rheological behaviour of such systems, although greater attention is being paid to discerning more accurate mathematical models for visco-plastic systems. In this regard, the work presented herein investigates existing, unconventional viscoplastic models and evaluates their fitting and predictive capabilities in relation to collected magnetorheological data. The four-parameter models of modified Carreau, modified Cross (and its variant extended with the Quemada equation), Shulman and Nasiri-Ashrafizadeh were applied to appraise the shear data of the magnetorheological fluids. Their suitability was also statistically evaluated and compared with that attained for the conventional Herschel-Bulkley model and recently employed analogues, such as the Robertson-Stiff and Mizrahi-Berk models. It was found that the performance of all models for describing magnetorheological flow curves was adequate, with relatively high correlation coefficients. Applying the four-parameter models, however, provided higher accuracy, demonstrated by notably reduced statistical coefficients of regression analysis. Both of the modified Carreau and Cross models exhibited superior fitting performance (up to 4-times lower root mean square error), while the Shulman and Nasiri-Ashrafizadeh models proved questionable in application. Although interpreting four-parameter equations is a rather complex matter, they provided more reliable prediction of shear stress data across the entire range of shear rate than the Herschel-Bulkley approximation, especially the modified Carreau and modified Cross models. It is believed that these findings can be extended to describe the rheology of other systems with viscoplastic characteristics. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1011144
utb.identifier.obdid 43884380
utb.identifier.scopus 2-s2.0-85138441502
utb.identifier.wok 000877361400004
utb.identifier.coden MSMSD
utb.source j-scopus
dc.date.accessioned 2022-10-05T13:13:10Z
dc.date.available 2022-10-05T13:13:10Z
dc.description.sponsorship Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; Akademie Věd České Republiky, AV ČR
dc.description.sponsorship project DKRVO - Ministry of Education, Youth and Sports of the Czech Republic [RP/CPS/2022/007]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Cvek, Martin
utb.fulltext.affiliation Martin Cvek Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, 760 01, Zlín, Czech Republic E-mail address: [email protected].
utb.fulltext.dates Received 22 March 2022 Received in revised form 12 May 2022 Accepted 16 August 2022 Available online 28 August 2022
utb.fulltext.references Datasheet data. ARUS MR tech. Available online: https://arusmrtech.com (accessed on February, 2022). Datasheetb. LORD corporation. Available online: https://lord.com (accessed on February, 2022). Andaverde, J.A., Wong-Loya, J.A., Vargas-Tabares, Y., Robles, M., 2019. A practical method for determining the rheology of drilling fluid. J. Pet. Sci. Eng. 180, 150–158. https://doi.org/10.1016/j.petrol.2019.05.039. Apostolidis, A.J., Beris, A.N., 2014. Modeling of the blood rheology in steady-state shear flows. J. Rheol. 58, 607–633. https://doi.org/10.1122/1.4866296. Bahiuddin, I., Mazlan, S.A., Shapiai, I., Imaduddin, F., Ubaidillah, Choi, S.B., 2018a. Constitutive models of magnetorheological fluids having temperature-dependent prediction parameter. Smart Mater. Struct. 27, 095001 https://doi.org/10.1088/1361-665X/aac237. Bahiuddin, I., Mazlan, S.A., Shapiai, M.I., Choi, S.B., Imaduddin, F., Rahman, M.A.A., Ariff, M.H.M., 2018b. A new constitutive model of a magneto-rheological fluid actuator using an extreme learning machine method. Sens. Actuators, A 281, 209–221. https://doi.org/10.1016/j.sna.2018.09.010. Bahiuddin, I., Mazlan, S.A., Shapiai, M.I., Imaduddin, F., Ubaidillah, Choi, S.B., 2019. A new platform for the prediction of field-dependent yield stress and plastic viscosity of magnetorheological fluids using particle swarm optimization. Appl. Soft Comput. 76, 615–628. https://doi.org/10.1016/j.asoc.2018.12.038. Baldino, S., Osgouei, R.E., Ozbayoglu, E., Miska, S.Z., May, R., 2018. Quemada model approach to oil or synthetic oil based drilling fluids rheological modelling. J. Pet. Sci. Eng. 163, 27–36. https://doi.org/10.1016/j.petrol.2017.12.042. Barnes, H.A., 1999. The yield stress - a review or ’pi alpha nu tau alpha rho epsilon iota’ - everything flows? J. Non-Newtonian Fluid Mech. 81, 133–178. https://doi.org/10.1016/s0377-0257(98)00094-9. Bossis, G., Lacis, S., Meunier, A., Volkova, O., 2002a. Magnetorheological fluids. J. Magn. Magn Mater. 252, 224–228. https://doi.org/10.1016/s0304-8853(02)00680-7. Bossis, G., Volkova, O., Lacis, S., Meunier, A., 2002b. Magnetorheology: fluids, structures and rheology. In: Odenbach, S. (Ed.), Ferrofluids: Magnetically Controllable Fluids and Their Applications. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 202–230. https://doi.org/10.1007/3-540-45646-5_11. Carrier, V., Petekidis, G., 2009. Nonlinear rheology of colloidal glasses of soft thermosensitive microgel particles. J. Rheol. 53, 245–273. https://doi.org/10.1122/1.3045803. Chaudhuri, A., Wereley, N.M., Radhakrishnan, R., Choi, S.B., 2006. Rheological parameter estimation for a ferrous nanoparticle-based magnetorheological fluid using genetic algorithms. J. Intell. Mater. Syst. Struct. 17, 261–269. https://doi.org/10.1177/1045389x06063038. Cvek, M., Mrlik, M., Pavlinek, V., 2016. A rheological evaluation of steady shear magnetorheological flow behavior using three-parameter viscoplastic models. J. Rheol. 60, 687–694. https://doi.org/10.1122/1.4954249. Cvek, M., Mrlik, M., Moucka, R., Sedlacik, M., 2018. A systematical study of the overall influence of carbon allotrope additives on performance, stability and redispersibility of magnetorheological fluids. Colloids Surf., A 543, 83–92. https://doi.org/10.1016/j.colsurfa.2018.01.046. Cvek, M., Torres-Mendieta, R., Havelka, O., Urbanek, M., Plachy, T., Cernik, M., 2020. Laser-induced fragmentation of carbonyl iron as a clean method to enhance magnetorheological effect. J. Clean. Prod. 254, 120182 https://doi.org/10.1016/j.jclepro.2020.120182. Cvek, M., Kollar, J., Mrlik, M., Masar, M., Suly, P., Urbanek, M., Mosnacek, J., 2021. Surface-initiated mechano-ATRP as a convenient tool for tuning of bidisperse magnetorheological suspensions toward extreme kinetic stability. Polym. Chem. 12, 5093–5105. https://doi.org/10.1039/d1py00930c. Daniel, G., Yoan, C., Zoltan, P., Yves, P., 2014. Bingham-Papanastasiou and approximate parallel models comparison for the design of magneto-rheological valves. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics (AIM). Ieee, Besancon, France 168–173. http://refhub.elsevier.com/S0167-6636(22)00212-5/sref18 David, J., Filip, P., Kharlamov, A.A., 2013a. Back extrusion of Vocadlo-type fluids. Appl. Rheol. 23, 45366 https://doi.org/10.3933/ApplRheol-23-45366. David, J., Filip, P., Kharlamov, A.A., 2013b. Empirical modelling of nonmonotonous behaviour of shear viscosity. Adv. Mater. Sci. Eng. 658187 https://doi.org/10.1155/2013/658187. de Vicente, J., Berli, C.L.A., 2013. Aging, rejuvenation, and thixotropy in yielding magnetorheological fluids. Rheol. Acta 52, 467–483. https://doi.org/10.1007/s00397-013-0704-8. de Vicente, J., Klingenberg, D.J., Hidalgo-Alvarez, R., 2011. Magnetorheological fluids: a review. Soft Matter 7, 3701–3710. https://doi.org/10.1039/c0sm01221a. Divoux, T., Barentin, C., Manneville, S., 2011. Stress overshoot in a simple yield stress fluid: an extensive study combining rheology and velocimetry. Soft Matter 7, 9335–9349. https://doi.org/10.1039/c1sm05740e. Divoux, T., Fardin, M.A., Manneville, S., Lerouge, S., 2016. Shear banding of complex fluids. Annu. Rev. Fluid Mech. 48, 81–103. https://doi.org/10.1146/annurev-fluid122414-034416. Elsaady, W., Oyadiji, S.O., Nasser, A., 2020. A one-way coupled numerical magnetic field and CFD simulation of viscoplastic compressible fluids in MR dampers. Int. J. Mech. Sci. 167, 105265 https://doi.org/10.1016/j.ijmecsi.2019.105265. Esmaeilnezhad, E., Choi, H.J., Schaffie, M., Gholizadeh, M., Ranjbar, M., Kwon, S.H., 2017. Rheological analysis of magnetite added carbonyl iron based magnetorheological fluid. J. Magn. Magn Mater. 444, 161–167. https://doi.org/10.1016/j.jmmm.2017.08.023. Ezure, R., Sagawa, T., Horiguchi, T., Arai, Y., Komatsu, H., Yamagiwa, K., Tajima, H., 2021. Flow characteristics of hydrofluorocarbon gas hydrate slurries under various conditions in a loop tube. Chem. Eng. Sci. 246, 116974 https://doi.org/10.1016/j.ces.2021.116974. Farjoud, A., Ahmadian, M., Mahmoodi, N., Zhang, X., Craft, M., 2011. Nonlinear modeling and testing of magneto-rheological fluids in low shear rate squeezing flows. Smart Mater. Struct. 20, 085013 https://doi.org/10.1088/0964-1726/20/8/085013. Gao, C.Y., Kim, M.W., Bae, D.H., Dong, Y.Z., Piao, S.H., Choi, H.J., 2017. Fe3O4 nanoparticle-embedded polystyrene composite particles fabricated via a Shirasu porous glass membrane technique and their magnetorheology. Polymer 125, 21–29. https://doi.org/10.1016/j.polymer.2017.07.079. Ginder, J.M., Davis, L.C., Elie, L.D., 1996. Rheology of magnetorheological fluids: models and measurements. Int. J. Mod. Phys. B 10, 3293–3303. https://doi.org/10.1142/s0217979296001744. Gorislavec, V.M., Smol’skii, B.M., Shul’man, Z.P., 1968. Rheophysics and Rheodynamics, Nauka i technika ed. (in Russian) Minsk. http://refhub.elsevier.com/S0167-6636(22)00212-5/sref31 Gullu, H., 2016. Comparison of rheological models for jet grout cement mixtures with various stabilizers. Construct. Build. Mater. 127, 220–236. https://doi.org/10.1016/j.conbuildmat.2016.09.129. Hodne, H., Galta, S., Saasen, A., 2007. Rheological modelling of cementitious materials using the Quemada model. Cement Concr. Res. 37, 543–550. https://doi.org/10.1016/j.cemconres.2006.11.020. Jonkkari, I., Syrjala, S., 2011. Transient rheology of a magnetorheological fluid under shearing. Annu. Trans. - Nord. Rheol. Soc. 19. http://refhub.elsevier.com/S0167-6636(22)00212-5/sref34 Jonkkari, I., Kostamo, E., Kostamo, J., Syrjala, S., Pietola, M., 2012. Effect of the plate surface characteristics and gap height on yield stresses of a magnetorheological fluid. Smart Mater. Struct. 21, 075030 https://doi.org/10.1088/0964-1726/21/7/075030. Kelessidis, V.C., Maglione, R., 2006. Modeling rheological behavior of bentonite suspensions as Casson and Robertson-Stiff fluids using Newtonian and true shear rates in Couette viscometry. Powder Technol. 168, 134–147. https://doi.org/10.1016/j.powtec.2006.07.011. Khan, M., Sardar, H., Gulzar, M.M., Alshomrani, A.S., 2018. On multiple solutions of non-Newtonian Carreau fluid flow over an inclined shrinking sheet. Results Phys. 8, 926–932. https://doi.org/10.1016/j.rinp.2018.01.021. Knutsen, S., Cayeux, E., Saasen, A., Khalifeh, M., 2021. Application of the Quemada Viscosity model for drilling fluids. In: Proc. ASME 2021 Int. Conf. Ocean, Offshore Arct. Eng., 40th. https://doi.org/10.1115/OMAE2021-60500. Kuzhir, P., Bossis, G., Bashtovoi, V., Vekas, L., 2005. Capillary flow of a suspension of non-magnetic particles in a ferrofluid under highly non-uniform magnetic field. Int. J. Multiphas. Flow 31, 201–221. https://doi.org/10.1016/j.ijmultiphaseflow.2004.09.006. Laun, H.M., Gabriel, C., Kieburg, C., 2011. Wall material and roughness effects on transmittable shear stresses of magnetorheological fluids in plate-plate magnetorheometry. Rheol. Acta 50, 141–157. https://doi.org/10.1007/s00397-011-0531-8. Mannarswamy, A., Munson-McGee, S.H., Andersen, P.K., 2010. D-optimal designs for the Cross viscosity model applied to guar gum mixtures. J. Food Eng. 97, 403–409. https://doi.org/10.1016/j.jfoodeng.2009.10.035. Min, T.H., Choi, H.J., Kim, N.H., Park, K., You, C.Y., 2017. Effects of surface treatment on magnetic carbonyl iron/polyaniline microspheres and their magnetorheological study. Colloids Surf., A 531, 48–55. https://doi.org/10.1016/j.colsurfa.2017.07.070. Mohamed, A., Salehi, S., Ahmed, R., 2021. Significance and complications of drilling fluid rheology in geothermal drilling: a review. Geothermics 93, 102066. https://doi.org/10.1016/j.geothermics.2021.102066. Nasiri, M., Ashrafizadeh, S.N., 2010. Novel equation for the prediction of rheological parameters of drilling fluids in an annulus. Ind. Eng. Chem. Res. 49, 3374–3385. https://doi.org/10.1021/ie9009233. Papanastasiou, T.C., 1987. Flows of materials with yield. J. Rheol. 31, 385–404. https://doi.org/10.1122/1.549926. Pease, L.F., Daniel, R.C., Burns, C.A., 2019. Slurry rheology of Hanford sludge. Chem. Eng. Sci. 199, 628–634. https://doi.org/10.1016/j.ces.2018.12.044. Pelegrine, D.H., Silva, F.C., Gasparetto, C.A., 2002. Rheological behavior of pineapple and mango pulps. Food Sci. Technol. 35, 645–648. https://doi.org/10.1006/fstl.2002.0920. Pivokonsky, R., Filip, P., 2014. Predictive/fitting capabilities of differential constitutive models for polymer melts-reduction of nonlinear parameters in the eXtended PomPom model. Colloid Polym. Sci. 292, 2753–2763. https://doi.org/10.1007/s00396-014-3308-7. Plachy, T., Kutalkova, E., Sedlacik, M., Vesel, A., Masar, M., Kuritka, I., 2018. Impact of corrosion process of carbonyl iron particles on magnetorheological behavior of their suspensions. J. Ind. Eng. Chem. 66, 362–369. https://doi.org/10.1016/j.jiec.2018.06.002. Poslinski, A.J., Ryan, M.E., Gupta, R.K., Seshadri, S.G., Frechette, F.J., 1988. Rheological behavior of filled polymeric systems I. Yield stress and shear-thinning effects. J. Rheol. 32, 703–735. https://doi.org/10.1122/1.549987. Quemada, D., 1998. Rheological modelling of complex fluids. I. The concept of effective volume fraction revisited. Eur. Phys. J. Appl. Phys. 1, 119–127. https://doi.org/10.1051/epjap:1998125. Rabinow, J., 1948. The magnetic fluid clutch. AIEE Trans 67, 1308–1315. https://doi.org/10.1109/T-AIEE.1948.5059821. Rayment, P., RossMurphy, S.B., Ellis, P.R., 1995. Rheological properties of guar galactomannan and rice starch mixtures: 1. Steady shear measurements. Carbohydr. Polym. 28, 121–130. https://doi.org/10.1016/0144-8617(95)00110-7. Rayment, P., Ellis, P.R., Ross-Murphy, S.B., 2000. Rheological Properties of Guar Galactomannan Solutions Filled with Particulate Inclusions. Elsevier Science Bv, Amsterdam, pp. 193–198. http://refhub.elsevier.com/S0167-6636(22)00212-5/sref54 Romano, M.R., Cuomo, F., Massarotti, N., Mauro, A., Salahudeen, M., Costagliola, C., Ambrosone, L., 2017. Temperature effect on rheological behavior of silicone oils: a model for the viscous heating. J. Phys. Chem. B 121, 7048–7054. https://doi.org/10.1021/acs.jpcb.7b03351. Ronzova, A., Sedlacik, M., Cvek, M., 2021. Magnetorheological fluids based on core-shell carbonyl iron particles modified by various organosilanes: synthesis, stability and performance. Soft Matter 17, 1299–1306. https://doi.org/10.1039/d0sm01785j. Roupec, J., Jenis, F., Strecker, Z., Kubik, M., Machacek, O., 2020. Stribeck curve of magnetorheological fluid within pin-on-disc configuration: an experimental investigation. Materials 13, 4670. https://doi.org/10.3390/ma13204670. Ruiz-Lopez, J.A., Fernandez-Toledano, J.C., Hidalgo-Alvarez, R., de Vicente, J., 2016. Testing the mean magnetization approximation, dimensionless and scaling numbers in magnetorheology. Soft Matter 12, 1468–1476. https://doi.org/10.1039/c5sm02267c. Ruiz-Lopez, J.A., Hidalgo-Alvarez, R., de Vicente, J., 2017. Towards a universal master curve in magnetorheology. Smart Mater. Struct. 26, 054001 https://doi.org/10.1088/1361-665X/aa6648. Skadsem, H.J., Saasen, A., 2019. Concentric cylinder viscometer flows of HerschelBulkley fluids. Appl. Rheol. 29, 173–181. https://doi.org/10.1515/arh-2019-0015. Song, K.W., Kim, Y.S., Chang, G.S., 2006. Rheology of concentrated xanthan gum solutions: steady shear flow behavior. Fibers Polym. 7, 129–138. https://doi.org/10.1007/bf02908257. Susan-Resiga, D., 2009. A rheological model for magneto-rheological fluids. J. Intell. Mater. Syst. Struct. 20, 1001–1010. https://doi.org/10.1177/1045389X08100979. Tao, R., 2001. Super-strong magnetorheological fluids. J. Phys. Condens. Matter 13, R979–R999. https://doi.org/10.1088/0953-8984/13/50/202. Ulicny, J.C., Golden, M.A., Namuduri, C.S., Klingenberg, D.J., 2005. Transient response of magnetorheological fluids: shear flow between concentric cylinders. J. Rheol. 49, 87–104. https://doi.org/10.1122/1.1803576. Volkova, O., Cutillas, S., Bossis, G., 1999. Shear banded flows and nematic-to-isotropic transition in ER and MR fluids. Phys. Rev. Lett. 82, 233–236. https://doi.org/10.1103/PhysRevLett.82.233. Wang, Z., Shahrivar, K., de Vicente, J., 2014. Creep and recovery of magnetorheological fluids: experiments and simulations. J. Rheol. 58, 1725–1750. https://doi.org/10.1122/1.4891247. Wollny, K., Lauger, J., Huck, S., 2001. Magneto sweep – a new method for characterizing the viscoelastic properties of magneto-rheological fluids. Appl. Rheol. 12, 25–31. https://doi.org/10.1515/arh-2002-0003.
utb.fulltext.sponsorship This work was supported solely by the project DKRVO [RP/CPS/2022/007] funded by the Ministry of Education, Youth and Sports of the Czech Republic. The author M.C. is grateful to Assoc. Prof. Petr Filip (Institute for Hydrodynamics, Czech Academy of Sciences) for providing hardly-accessible publications on mathematical modelling.
utb.wos.affiliation [Cvek, Martin] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Trida T Bati 5678, Zlin 76001, Czech Republic
utb.scopus.affiliation Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, Zlín760 01, Czech Republic
utb.fulltext.projects RP/CPS/2022/007
utb.fulltext.faculty University Institute
utb.fulltext.ou Centre of Polymer Systems
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam