Publikace UTB
Repozitář publikační činnosti UTB

Effect of polyurethane structure on arsenic adsorption capacity in nanofibrous polymer/ferrous sulphate-based systems

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Effect of polyurethane structure on arsenic adsorption capacity in nanofibrous polymer/ferrous sulphate-based systems en
dc.contributor.author Domincová Bergerová, Eva
dc.contributor.author Kimmer, Dušan
dc.contributor.author Kovářová, Miroslava
dc.contributor.author Lovecká, Lenka
dc.contributor.author Vincent, Ivo
dc.contributor.author Dröhsler, Petra
dc.contributor.author Adamec, Vladimír
dc.contributor.author Köbölová, Klaudia
dc.contributor.author Sedlařík, Vladimír
dc.relation.ispartof Environmental Science-Water Research & Technology
dc.identifier.issn 2053-1400 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 2053-1419 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022-10-27
dc.type article
dc.language.iso en
dc.publisher Royal Society of Chemistry
dc.identifier.doi 10.1039/d2ew00566b
dc.relation.uri https://pubs.rsc.org/en/content/articlelanding/2022/EW/D2EW00566B
dc.subject arsenic en
dc.subject adsorption process en
dc.subject polyurethane en
dc.subject nanofibres en
dc.subject ferrous sulphate en
dc.description.abstract This study investigates the effect of the nanofibrous polymeric structure of an adsorptive material, modified with an immobilized inorganic sorbent based on ferrous sulphate, on the capacity of the material to remove arsenic from contaminated water. Nanofibrous materials were prepared by electrospinning from polyurethane types selected using a primary adsorption test. The functional groups and chemical composition (FTIR, EDX), morphology (SEM, porometry) and hydrophilicity (contact angles) of the prepared nanostructured materials were determined in order to assess the effect of composition and structure on the removal of arsenic. The process of arsenic removal was monitored by atomic absorption spectroscopy (AAS). It was found that certain samples of polyurethanes, particularly self-synthesized aromatic polyurethane of an ester type, PU918, could remove arsenic by complexation on nitrogen in their polymer chains. The greatest efficiency for arsenic removal was ca. 60% (initial cAs = 150 μg L−1). It was also found that adding even a small amount (1 wt%) of an inorganic adsorbent based on ferrous sulphate into the fibre mass of the nanofibrous structure would increase the efficiency up to 90% as a result of a chemical reaction between the additive and arsenic ions. The extent and rate of adsorption were described by kinetic and isotherm models. The adsorption process is well characterized by a pseudo-second-order kinetic model and both Freundlich and Langmuir isotherm models. High adsorption capacity and rate are the basis for the use of nanofibrous material in filters for arsenic separation. © 2022 The Royal Society of Chemistry. en
utb.faculty University Institute
utb.faculty Faculty of Logistics and Crisis Management
dc.identifier.uri http://hdl.handle.net/10563/1011137
utb.identifier.obdid 43884260
utb.identifier.scopus 2-s2.0-85140233751
utb.identifier.wok 000854650100001
utb.source J-wok
dc.date.accessioned 2022-09-30T08:34:07Z
dc.date.available 2022-09-30T08:34:07Z
dc.description.sponsorship Technological Agency of the Czech Republic [TJ02000269]; Ministry of Education Youth and Sports of the Czech Republic-programme DKRVO [RP/CPS/2022/002]
dc.description.sponsorship Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: RP/CPS/2022/002; Technologická Agentura České Republiky: TJ02000269
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Domincová Bergerová, Eva
utb.contributor.internalauthor Kimmer, Dušan
utb.contributor.internalauthor Kovářová, Miroslava
utb.contributor.internalauthor Lovecká, Lenka
utb.contributor.internalauthor Vincent, Ivo
utb.contributor.internalauthor Dröhsler, Petra
utb.contributor.internalauthor Adamec, Vladimír
utb.contributor.internalauthor Sedlařík, Vladimír
utb.fulltext.affiliation Eva Domincova Bergerova,1* Dusan Kimmer,1 Miroslava Kovarova,1 Lenka Lovecka,1 Ivo Vincent,1 Petra Drohsler, 1 Vladimir Adamec,2, 3 Klaudia Kobolova,2 Vladimir Sedlarik1 1 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, tr. Tomase Bati 5678,760 01 Zlin, Czech Republic 2 Institute of Forensic Engineering, Brno University of Technology, Brno 601 90, Czech Republic 3 Faculty of Logistic and Crisis Management, Tomas Bata University in Uherske Hradiste, Studentske namesti, 1532, 686 01, Uherske Hradiste, Czech Republic *Corresponding author: Eva Domincova Bergerova, [email protected]
utb.fulltext.dates Submitted 21 Jul 2022 Accepted 03 Sep 2022 First published 15 Sep 2022
utb.fulltext.references 1 D. K. Gupta and S. Chatterjee, Arsenic Contamination from Historical Aspects to the Present. Arsenic Contamination in the Environment, The Issues and Solutions, Springer International Publishing, 2017. 2 N. Gaur, G. Flora, M. Yadav and A. Tiwari, Environ. Sci. Process. Impacts, 2014, 16, 180–193. 3 E. Shaji, M. Santosh, K. V. Sarath, P. Prakash, V. Deepchand and B. V. Divya, Geosci. Front., 2021, 12, 101079. 4 2018 WHO, Arsenic, https://www.who.int/news-room/fact-sheets/detail/arsenic, (accessed 5 January 2022). 5 2011 WHO, World Heal. Organ. 6 S. A. Ahmad, M. H. Khan and M. Haque, Risk Manag. Healthc. Policy, 2018, 11, 251–261 7 M. Bierkens, Water Resour. Res. Hydrol. Cryosph. Earth Surf., , DOI:10.1029/2020WR027178. 8 R. M. Smith AH, Lingas EO, Contamination of drinking-water by arsenic in Bangladesh: a public health emergency - PubMed, https://pubmed.ncbi.nlm.nih.gov/11019458/, (accessed 5 January 2022). 9 S. V. Flanagan, R. B. Johnston and Y. Zheng, Bull. World Health Organ., 2012, 90, 839–846. 10 D. Chakraborti, M. M. Rahman, B. Das, B. Nayak, A. Pal, M. K. Sengupta, M. A. Hossain, S. Ahamed, M. Sahu, K. C. Saha, S. C. Mukherjee, S. Pati, R. N. Dutta and Q. Quamruzzaman, Environ. Earth Sci., 2013, 70, 1993–2008. 11 W. M. Edmunds, K. M. Ahmed and P. G. Whitehead, Environ. Sci. Process. Impacts, 2015, 17, 1032–1046. 12 D. R. S. Middleton, M. J. Watts, E. M. Hamilton, T. Fletcher, G. S. Leonardi, R. M. Close, K. S. Exley, H. Crabbe and D. A. Polya, Environ. Sci. Process. Impacts, 2016, 18, 562–574. 13 R. Eisler, Rev. Environ. Contam. Toxicol., 2004, 180, 133–165. 14 Jack C. Ng, Environ. Chem., 2005, 2, 146–160. 15 2008 WHO, World Heal. Organ. 16 M. F. Hughes, B. D. Beck, Y. Chen, A. S. Lewis and D. J. Thomas, Toxicol. Sci., 2011, 123, 305–332. 17 V. D. Martinez, E. A. Vucic, D. D. Becker-Santos, L. Gil and W. L. Lam, J. Toxicol., 2011, 1–13. 18 D. M. and U. Dasgupta, Kaohsiung J. Med. Sci., 2011, 27, 360–370. 19 B. S. Rana T, Sarkar S, Mandal TK, Internete J. Haematol., , DOI:10.5580/5A7. 20 B. K. Datta, A. Mishra, A. Singh, T. K. Sar, S. Sarkar, A. Bhatacharya, A. K. Chakraborty and T. K. Mandal, Sci. Total Environ., 2010, 409, 284–288. 21 K. H. Antman, Oncologist, 2001, 6, 1–2. 22 S. M. Bhatti, C. W. N. Anderson, R. B. Stewart and B. H. Robinson, Environ. Sci. Process. Impacts, 2013, 15, 1866–1875. 23 W. L. Fields K, Chen A, Arsenic removal from drinking water by coagulation/filtration and lime softening plants. Research report EPA/600/R-00/063, 2000. 24 N. R. Nicomel, K. Leus, K. Folens, P. Van Der Voort and G. Du Laing, Int. J. Environ. Res. Public Heal. 2016, Vol. 13, Page 62, 2015, 13, 62. 25 B. Han, T. Runnells, J. Zimbron and R. Wickramasinghe, Desalination, 2002, 145, 293–298. 26 M.-C. Shih, An Overview of Arsenic Removal by Pressure-Driven, An overview of arsenic removal by pressure-driven membrane processes, https://www.scribd.com/document/514551802/An-overview-of-arsenic-removal-by40 pressure-driven, (accessed 4 January 2022). 27 B. Van Der Bruggen, C. Vandecasteele, Ti, V. Gestel, W. M. Doyenb and R. Leysenb, Environ. Prog., 2003, 22, 46–56. 28 D. A. Clifford, Ion exchange and inorganic adsorption.Water quality and treatment : a handbook of community water supplies, McGraw-Hill, New York :, 5th ed., 1999, vol. 331. 29 D. C. and C. Lin, Arsenic(III) and arsenic(V) removal from drinking water in San Ysidro, New Mexico, Research report EPA/600/2-91/011, Cincinnati, OH, 1991. 30 J. D. Chwirka, B. M. Thomson and J. M. Stomp, J. / Am. Water Work. Assoc., 2000, 92, 79–88. 31 P. Chutia, S. Kato, T. Kojima and S. Satokawa, J. Hazard. Mater., 2009, 162, 440–447. 32 W. L. Fields K, Chen A, Arsenic removal from drinking water by iron removal plants. Research report EPA/600/R-00/086, Washington, DC 20460, 2000. 33 S. C. N. Tang and I. M. C. Lo, Water Res., 2013, 47, 2613–2632. 34 S. Yao, Z. Liu and Z. Shi, J. Environ. Heal. Sci. Eng., 2014, 12, 1–8. 35 R. Biela, T. Kučera and J. Vosáhlo, Odstraňování arsenu z vody sorpčními materiály, https://voda.tzb-info.cz/vlastnosti-a-zdroje-vody/8360-odstranovani-arsenu-z-vody7 sorpcnimi-materialy, (accessed 4 January 2022). 36 A. Sigdel, J. Lim, J. Park, H. Kwak, S. Min, K. Kim, H. Lee, C. H. Nahm and P. K. Park, Environ. Sci. Water Res. Technol., 2018, 4, 1114–1123. 37 B. Paul, V. Parashar and A. Mishra, Cite this Environ. Sci. Water Res. Technol, 2014, 1, 77. 38 2009 CAWST, Cent. Afford. Water Sanit. Technol. 39 R. S. Harisha, K. M. Hosamani, R. S. Keri, S. K. Nataraj and T. M. Aminabhavi, Desalination, 2010, 252, 75–80. 40 C. M. Nguyen, S. Bang, J. Cho and K. W. Kim, Desalination, 2009, 245, 82–94. 41 A. Figoli, A. Cassano, A. Criscuoli, M. S. I. Mozumder, M. T. Uddin, M. A. Islam and E. Drioli, Water Res., 2010, 44, 97–104. 42 R. Rezaee, S. Nasseri, A. H. Mahvi, R. Nabizadeh, S. A. Mousavi, A. Rashidi, A. Jafari and S. Nazmara, J. Environ. Heal. Sci. Eng., , DOI:10.1186/S40201-015-0217-8. 43 S. Chatterjee and S. De, Cite this Environ. Sci. Water Res. Technol, 2014, 1, 227. 44 X. Y. Xu, S. P. McGrath and F. J. Zhao, New Phytol., 2007, 176, 590–599. 45 V. Kumar, S. K. Shahi and S. Singh, Microb. Bioprospecting Sustain. Dev., 2018, 115–136. 46 C. C. Azubuike, C. B. Chikere and G. C. Okpokwasili, World J. Microbiol. Biotechnol., 2016, 32. 47 G. M. Sawood, S. Dixit, G. Mishra and S. K. Gupta, Environ. Sci. Water Res. Technol., 2021, 7, 2129–2144. 48 G. Woods and ICI Polyurethanes (Book), Wiley Publ. NewYork, 1990, 364. 49 F. Yilmaz, Aspects of Polyurethanes, InTech, 2017. 50 H. Zhuo, J. Hu, S. Chen and L. Yeung, J. Appl. Polym. Sci., 2008, 109, 406–411. 51 M. G. McKee, T. Park, S. Unal, I. Yilgor and T. E. Long, Polymer (Guildf)., 2005, 46, 2011–2015. 52 D. Kimmer, M. Zatloukal, D. Petras, I. Vincent and P. Slobodian, AIP Conf. Proc., 2009, 1152, 305–311. 53 F.-S. Fattahi, A. Khoddami and O. Avinc, Poly(lactic acid) (PLA) Nanofibers for Bone Tissue Engineering, 2019, vol. 7. 54 N. C. Zanini, A. G. De Souza, R. Fs Barbosa, D. S. Rosa and D. R. Mulinari, J. Cell. Plast., 2022, 58, 139–158. 55 Z. Rahmatpanah and M. M. Alavi Nikje, Polym. Bull., 2021, 78, 3651–3666. 56 G. Trovati, E. A. Sanches, S. C. Neto, Y. P. Mascarenhas and G. O. Chierice, J. Appl. Polym. Sci., 2010, 115, 263–268. 57 M. M. Gómez-Sánchez E, Simon S, Koch L-Ch, Wiedmann A, Weber T, Spectrosc. Eur. world. 58 L. Zou, S. Zhang, D. Duan, X. Liang, J. Shi, J. Xu and X. Tang, Environ. Sci. Pollut. Res., 2018, 25, 8888–8902. 59 T. Zhang, Y. Zhao, S. Kang, Y. Li and Q. Zhang, J. Clean. Prod., 2019, 227, 1–9. 60 E. Darezereshki, A. khodadadi Darban, M. Abdollahy and A. Jamshidi-Zanjani, Environ. Nanotechnology, Monit. Manag., 2018, 10, 51–62. 61 D. K. Nordstrom, J. Majzlan and E. Königsberger, Rev. Mineral. Geochemistry, 2014, 79, 217–255. 62 A. Mohammadi, M. Barikani and M. Barmar, Polym. Bull., 2015, 2, 219–234. 63 Y. Z. Yang, M. J. Li, B. B. Zhou, Q. Zhang, X. L. Li, J. K. Zhang and Q. P. Wei, Chem. Pap., 2019, 73, 321–329. 64 B. M. Marković, D. L. Janković, A. A. Vukadinović, D. V. Randelović, D. D. Maksin, V. V. Spasojević and A. B. Nastasović, RSC Adv., 2017, 7, 21412–21421. 65 A. Günay, E. Arslankaya and I. Tosun, J. Hazard. Mater., 2007, 146, 362–371. 66 H. Qiu, L. Lv, B. C. Pan, Q. J. Zhang, W. M. Zhang and Q. X. Zhang, J. Zhejiang Univ. A 2009 105, 2009, 10, 716–724. 67 N. H. Abu-Zahra, F. B. Hussein, F. B. Hussein and N. H. Abu-Zahra, J. Miner. Mater. Charact. Eng., 2017, 5, 720–726. 68 M. Alimohammadi, Z. Saeedi, B. Akbarpour, H. Rasoulzadeh, K. Yetilmezsoy, M. A. Al-Ghouti, M. Khraisheh and G. McKay, Water. Air. Soil Pollut., DOI:10.1007/s11270-017-3607-y. 69 E. Ayranci and O. Duman. Chemical Engineering Journal, 2010, 156, 70-76. 70 E. Ayranci and O. Duman. Separation Science and Technology, 2009, 44, 3735-3752. 71 S. I. Siddiqui, P. N. Singh, N. Tara, S. Pal, S. A. Chaudhry and I. Sinha, Colloids Interface Sci. Commun., DOI:10.1016/j.colcom.2020.100263. 72 O. Duman and E. Ayranci. Journal of Hazardous Materials, 2010, 176, 231-238. 73 O. Duman and E. Ayranci. Separation Science and Technology, 2006, 41, 3673-3692. 74 B. Te, B. Wichitsathian and C. Yossapol, Int. J. Environ. Sci. Dev., 2015, 6, 799–804.
utb.fulltext.sponsorship This research was supported by the Technological Agency of the Czech Republic (project no. TJ02000269) and the Ministry of Education Youth and Sports of the Czech Republic-programme DKRVO (RP/CPS/2022/002).
utb.wos.affiliation [Bergerova, Eva Domincova; Kimmer, Dusan; Kovarova, Miroslava; Lovecka, Lenka; Vincent, Ivo; Drohsler, Petra; Sedlarik, Vladimir] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Tr Tomase Bati 5678, Zlin 76001, Czech Republic; [Adamec, Vladimir; Kobolova, Klaudia] Brno Univ Technol, Inst Forens Engn, Brno 60190, Czech Republic; [Adamec, Vladimir] Tomas Bata Univ Uherske Hradiste, Fac Logist & Crisis Management, Studentske Namesti 1532, Uherske Hradiste 68601, Czech Republic
utb.scopus.affiliation Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, tr. Tomase Bati 5678, Zlin, 760, Czech Republic; Institute of Forensic Engineering, Brno University of Technology, Brno, 601, Czech Republic; Faculty of Logistic and Crisis Management, Tomas Bata University in Uherske Hradiste, Studentske namesti, 1532, Uherske Hradiste, 686 01, Czech Republic
utb.fulltext.projects TJ02000269
utb.fulltext.projects RP/CPS/2022/002
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty Faculty of Logistic and Crisis Management
utb.fulltext.faculty University Institute
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam