Publikace UTB
Repozitář publikační činnosti UTB

Comparative degradation study of a biodegradable composite based on polylactide with halloysite nanotubes and a polyacrylic acid copolymer

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Comparative degradation study of a biodegradable composite based on polylactide with halloysite nanotubes and a polyacrylic acid copolymer en
dc.contributor.author Dröhsler, Petra
dc.contributor.author Yasir, Muhammad
dc.contributor.author Cruz Fabian, Dalila Rubicela
dc.contributor.author Císař, Jaroslav
dc.contributor.author Yadollahi, Zahra
dc.contributor.author Sedlařík, Vladimír
dc.relation.ispartof Materials Today Communications
dc.identifier.issn 2352-4928 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 33
dc.type article
dc.language.iso en
dc.publisher Elsevier Ltd
dc.identifier.doi 10.1016/j.mtcomm.2022.104400
dc.relation.uri https://linkinghub.elsevier.com/retrieve/pii/S2352492822012417
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S2352492822012417/pdfft
dc.subject accelerated degradation en
dc.subject polylactic acid en
dc.subject composting en
dc.subject biodegradation en
dc.subject abiotic hydrolysis en
dc.description.abstract This study investigates the optimal composition of two additives to accelerate the degradation mechanism of polylactide (PLA) material under different conditions: abiotic hydrolysis, biotic degradation and composting conditions at the laboratory scale level. The composites were prepared from a PLA matrix with a synthesised additive based on a copolymer of polylactic acid and polyacrylic acid (PLA-g-PAA) with inorganic filler halloysite (HNT). The aim was to design a composite material with improved physical and chemical properties and accelerated degradability than conventional PLA, which would apply to products incapable of mechanical or chemical recycling. The addition of HNT alone helped increase Young's modulus by 15-25 % but worsened the elongation, which was compensated by adding a second additive in the composite. The experimental data from abiotic hydrolysis and biodegradation were processed using appropriate kinetic models. Abiotic hydrolysis was recorded by changes in molecular weights and released carbon (GPC, TOC-L), confirming its acceleration in PLA/ 5H/20PLA-g-PAA composites by a faster release of ester bonds in PLA. A similar effect was observed during biotic degradation using the measured CO2 content (GC instrument), which was demonstrated by accelerating from 0.0238 day-1 for neat PLA to 0.0397 day-1. In composting conditions, the course was the fastest up to 45 days; samples containing additives were disintegrated by 94.1-99.8 %, without depreciating the properties of compost and plant germination. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1011135
utb.identifier.obdid 43884376
utb.identifier.scopus 2-s2.0-85137651521
utb.identifier.wok 000876942900006
utb.source j-scopus
dc.date.accessioned 2022-09-20T08:07:44Z
dc.date.available 2022-09-20T08:07:44Z
dc.description.sponsorship RP/CPS/2022/002; IGA/CPS/2021/002; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: 8JPL19031
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic [8JPL19031]; Internal Grant Agency of TBU in Zlin [IGA/CPS/2021/002]; DKRVO of the Ministry of Education, Youth and Sports of the Czech Republic [RP/CPS/2022/002]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Dröhsler, Petra
utb.contributor.internalauthor Yasir, Muhammad
utb.contributor.internalauthor Cruz Fabian, Dalila Rubicela
utb.contributor.internalauthor Císař, Jaroslav
utb.contributor.internalauthor Yadollahi, Zahra
utb.contributor.internalauthor Sedlařík, Vladimír
utb.fulltext.affiliation Petra Drohsler, Muhammad Yasir *, Dalila Rubicela Cruz Fabian, Jaroslav Cisar, Zahra Yadollahi, Vladimir Sedlarik * Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tr.T. Bati 5678, 76001 Zlín, Czech Republic * Corresponding authors. E-mail addresses: [email protected] (M. Yasir), [email protected] (V. Sedlarik).
utb.fulltext.dates Received 23 May 2022 Received in revised form 17 August 2022 Accepted 5 September 2022 Available online 7 September 2022
utb.fulltext.references [1] A. Gregorova, V. Sedlarik, M. Pastorek, H. Jachandra, F. Stelzer, Effect of compatibilizing agent on the properties of highly crystalline composites based on poly(lactic acid) and wood flour and/or mica, J. Polym. Environ. 19 (2011) 372–381, https://doi.org/10.1007/s10924-011-0292-6. [2] G. Kale, R. Auras, S.P. Singh, R. Narayan, Biodegradability of polylactide bottles in real and simulated composting conditions, Polym. Test. 26 (2007) 1049–1061, https://doi.org/10.1016/j.polymertesting.2007.07.006. [3] R. Pantani, A. Sorrentino, Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions, Polym. Degrad. Stab. 98 (2013) 1089–1096, https://doi.org/10.1016/j. polymdegradstab.2013.01.005. [4] J.H. Song, R.J. Murphy, R. Narayan, G.B.H. Davies, Biodegradable and compostable alternatives to conventional plastics, Philos. Trans. R. Soc. B Biol. Sci. 364 (2009) 2127–2139, https://doi.org/10.1098/rstb.2008.0289. [5] P. Stloukal, V. Verney, S. Commereuc, J. Rychly, L. Matisova-Rychlá, V. Pis, M. Koutny, Assessment of the interrelation between photooxidation and biodegradation of selected polyesters after artificial weathering, Chemosphere 88 (2012) 1214–1219, https://doi.org/10.1016/j.chemosphere.2012.03.072. [6] P. Stloukal, S. Pekařová, A. Kalendova, H. Mattausch, S. Laske, C. Holzer, L. Chitu, S. Bodner, G. Maier, M. Slouf, M. Koutny, Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process, Waste Manag. 42 (2015) 31–40, https://doi.org/10.1016/j.wasman.2015.04.006. [7] R.J. Mueller, Biological degradation of synthetic polyesters-enzymes as potential catalysts for polyester recycling, Process Biochem. 41 (2006) 2124–2128, https://doi.org/10.1016/j.procbio.2006.05.018. [8] Y. Nakayama, T. Inaba, Y. Toda, R. Tanaka, Z. Cai, T. Shiono, H. Shirahama, C. Tsutsumi, Synthesis and properties of cationic ionomers from poly(esterurethane)s based on polylactide, J. Polym. Sci. Part A Polym. Chem. 51 (2013) 4423–4428, https://doi.org/10.1002/pola.26857. [9] F. Masmoudi, A. Bessadok, M. Dammak, M. Jaziri, E. Ammar, Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose, Environ. Sci. Pollut. Res. 23 (2016) 20904–20914, https://doi.org/10.1007/s11356-016-7276-y. [10] R. Lipsa, N. Tudorachi, R.N. Darie-Nita, L. Oprică, C. Vasile, A. Chiriac, Biodegradation of poly(lactic acid) and some of its based systems with Trichoderma viride, Int. J. Biol. Macromol. 88 (2016) 515–526, https://doi.org/10.1016/j.ijbiomac.2016.04.017. [11] R. Renstad, S. Karlsson, Å. Sandgren, A.C. Albertsson, Influence of processing additives on the degradation of melt-pressed films of poly(ε-caprolactone) and poly(lactic acid), J. Environ. Polym. Degrad. 6 (1998) 209–221, https://doi.org/10.1023/A:1021829816140. [12] R. Pantani, A. Sorrentino, Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions, Polym. Degrad. Stab. 98 (2013) 1089–1096, https://doi.org/10.1016/j.polymdegradstab.2013.01.005. [13] H. Shinoda, Y. Asou, T. Kashima, T. Kato, Y. Tseng, T. Yagi, Amphiphilic biodegradable copolymer, poly(aspartic acid-co-lactide): acceleration of degradation rate and improvement of thermal stability for poly(lactic acid), poly(butylene succinate) and poly(-caprolactone), Polym. Degrad. Stab. 80 (2003) 241–250, https://doi.org/10.1016/S0141-3910(02)00404-4. [14] S.J. De Jong, E.R. Arias, D.T.S. Rijkers, C.F. Van Nostrum, J.J. Kettenes-Van Den Bosch, W.E. Hennink, New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus, Polymer 42 (2001) 2795–2802, https://doi.org/10.1016/S0032-3861(00)00646-7. [15] J.R. Rocca-Smith, O. Whyte, C.H. Brachais, D. Champion, F. Piasente, E. Marcuzzo, A. Sensidoni, F. Debeaufort, T. Karbowiak, Beyond biodegradability of poly(lactic acid): physical and chemical stability in humid environments, ACS Sustain. Chem. Eng. 5 (2017) 2751–2762, https://doi.org/10.1021/acssuschemeng.6b03088. [16] K. Fukushima, D. Tabuani, M. Dottori, I. Armentano, J.M. Kenny, G. Camino, Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites, Polym. Degrad. Stab. 96 (2011) 2120–2129, https://doi.org/10.1016/j.polymdegradstab.2011.09.018. [17] S.H. Othman, S.A.M. Edwal, N.P. Risyon, R.K. Basha, R.A. Talib, Water sorption and water permeability properties of edible film made from potato peel waste, Food Sci. Technol. 37 (2017) 63–70, https://doi.org/10.1590/1678-457X.30216. [18] N. Peelman, P. Ragaert, B. De Meulenaer, D. Adons, R. Peeters, L. Cardon, F. Van Impe, F. Devlieghere, Application of bioplastics for food packaging, Trends Food Sci. Technol. 32 (2013) 128–141, https://doi.org/10.1016/j.tifs.2013.06.003. [19] J.W. Rhim, H.M. Park, C.S. Ha, Bio-nanocomposites for food packaging applications, Prog. Polym. Sci. 38 (2013) 1629–1652, https://doi.org/10.1016/j.progpolymsci.2013.05.008. [20] E. Jamróz, P. Kulawik, P. Kopel, The effect of nanofillers on the functional properties of biopolymer-based films: a review, Polymers 11 (2019), https://doi.org/10.3390/polym11040675. [21] S.H. Othman, Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler, Agric. Agric. Sci. Procedia 2 (2014) 296–303, https://doi.org/10.1016/j.aaspro.2014.11.042. [22] N.P. Risyon, S.H. Othman, R.K. Basha, R.A. Talib, Effect of halloysite nanoclay concentration and addition of glycerol on mechanical properties of bionanocomposite films, Polym. Polym. Compos. 24 (2016) 795–802, https://doi.org/10.1177/096739111602400917. [23] A.C. Souza, R. Benze, E.S. Ferrao, ˜ C. Ditchfield, A.C.V. Coelho, C.C. Tadini, Cassava starch biodegradable films: influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature, LWT - Food Sci. Technol. 46 (2012) 110–117, https://doi.org/10.1016/j.lwt.2011.10.018. [24] N. Peelman, P. Ragaert, B. De Meulenaer, D. Adons, R. Peeters, L. Cardon, F. Van Impe, F. Devlieghere, Application of bioplastics for food packaging, Trends Food Sci. Technol. 32 (2013) 128–141, https://doi.org/10.1016/j.tifs.2013.06.003. [25] R.T. De Silva, P. Pasbakhsh, K.L. Goh, S.P. Chai, J. Chen, Synthesis and characterisation of poly (lactic acid)/halloysite bionanocomposite films, J. Compos. Mater. 48 (2014) 3705–3717, https://doi.org/10.1177/0021998313513046. [26] R. Kamble, M. Ghag, S. Gaikawad, B.K. Panda, Review article halloysite nanotubes and applications: a review, J. Adv. Sci. Res. 3 (2012) 25–29. [27] M. Liu, S.C. Dudley, Role for the unfolded protein response in heart disease and cardiac arrhythmias, Int. J. Mol. Sci. 17 (2015) 1–10, https://doi.org/10.3390/ijms17010052. [28] N.P. Risyon, S.H. Othman, R.K. Basha, R.A. Talib, Characterisation of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging, Food Packag. Shelf Life 23 (2020), 100450, https://doi.org/10.1016/j.fpsl.2019.100450. [29] P. Kucharczyk, A. Pavelková, P. Stloukal, V. Sedlarík, Degradation behaviour of PLA-based polyesterurethanes under abiotic and biotic environments, Polym. Degrad. Stab. 129 (2016) 222–230, https://doi.org/10.1016/j.polymdegradstab.2016.04.019. [30] No Titleالبترول ,n.d. [31] S. Kouser, S. Sheik, G.K. Nagaraja, A. Prabhu, K. Prashantha, J.N. D’souza, K. M. Navada, D.J. Manasa, Functionalisation of halloysite nanotube with chitosan reinforced poly (vinyl alcohol) nanocomposites for potential biomedical applications, Int. J. Biol. Macromol. 165 (2020) 1079–1092, https://doi.org/10.1016/j.ijbiomac.2020.09.188. [32] P. Kucharczyk, J. Zednik, P. Humpolicek, Z. Capakova, V. Sedlarik, Versatile synthesis of comb-shaped poly(lactic acid) copolymers with poly(acrylic acid)-based backbones and carboxylic acid end groups, React. Funct. Polym. 111 (2017) 79–87, https://doi.org/10.1016/j.reactfunctpolym.2016.12.012. [33] S. Sepahi, M. Kalaee, S. Mazinani, M. Abdouss, S.M. Hosseini, Introducing electrospun polylactic acid incorporating etched halloysite nanotubes as a new nanofibrous web for controlled release of Amoxicillin, J. Nanostruct. Chem. 11 (2021) 245–258, https://doi.org/10.1007/s40097-020-00362-w. [34] Y. Chen, L.M. Geever, J.A. Killion, J.G. Lyons, C.L. Higginbotham, D.M. Devine, Halloysite nanotube reinforced polylactic acid composite, Polym. Compos. 38 (2017) 2166–2173, https://doi.org/10.1002/pc.23794. [35] P. Jantrawut, T. Chaiwarit, K. Jantanasakulwong, C.H. Brachais, O. Chambin, Effect of plasticiser type on tensile property and in vitro indomethacin release of thin films based on low-methoxyl pectin, Polymers 9 (2017), https://doi.org/10.3390/polym9070289. [36] Z.W. Abdullah, Y. Dong, Biodegradable and water resistant poly(vinyl) alcohol (PVA)/starch (ST)/glycerol (GL)/halloysite nanotube (HNT) nanocomposite films for sustainable food packaging, Front. Mater. 6 (2019), https://doi.org/10.3389/fmats.2019.00058. [37] J. Sun, J. Shen, S. Chen, M.A. Cooper, H. Fu, D. Wu, Z. Yang, Nanofiller reinforced biodegradable PLA/PHA composites: current status and future trends, Polymers 10 (2018), https://doi.org/10.3390/polym10050505. [38] N.K. Kalita, A. Sarmah, S.M. Bhasney, A. Kalamdhad, V. Katiyar, Demonstrating an ideal compostable plastic using biodegradability kinetics of poly(lactic acid) (PLA) based green biocomposite films under aerobic composting conditions, Environ. Chall. 3 (2021), 100030, https://doi.org/10.1016/j.envc.2021.100030. [39] P. Stloukal, P. Kucharczyk, Acceleration of polylactide degradation under biotic and abiotic conditions through utilisation of a new, experimental, highly compatible additive, Polym. Degrad. Stab. 142 (2017) 217–225, https://doi.org/10.1016/j.polymdegradstab.2017.06.024. [40] D. Czarnecka-Komorowska, K. Bryll, E. Kostecka, M. Tomasik, E. Piesowicz, K. Gawdzińska, The composting of PLA/HNT biodegradable composites as an ecoapproach to the sustainability, Bull. Pol. Acad. Sci. Tech. Sci. 69 (2021) 1–13, https://doi.org/10.24425/bpasts.2021.136720. [41] Y. Tokiwa, B.P. Calabia, Biodegradability and biodegradation of poly(lactide), Appl. Microbiol. Biotechnol. 72 (2006) 244–251, https://doi.org/10.1007/s00253-006-0488-1. [42] A. Quitadamo, V. Massardier, V. Iovine, A. Belhadj, R. Bayard, M. Valente, Effect of cellulosicwaste derived filler on the biodegradation and thermal properties of HDPE and PLA composites, Processes 7 (2019), https://doi.org/10.3390/pr7100647. [43] F. Luzi, E. Fortunati, D. Puglia, R. Petrucci, J.M. Kenny, L. Torre, Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia oceanica, Polym. Degrad. Stab. 121 (2015) 105–115, https://doi.org/10.1016/j.polymdegradstab.2015.08.016. [44] G. Ozkoc, S. Kemaloglu, Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticised PLA, J. Appl. Polym. Sci. 114 (2009) 2481–2487, https://doi.org/10.1002/app.30772. [45] N.K. Kalita, M.K. Nagar, C. Mudenur, A. Kalamdhad, V. Katiyar, Biodegradation of modified poly(lactic acid) based biocomposite films under thermophilic composting conditions, Polym. Test. 76 (2019) 522–536, https://doi.org/10.1016/j.polymertesting.2019.02.021. [46] A.L. Meena, M. Karwal, D. Dutta, R.P. Mishra, Composting: phases and factors responsible for efficient and improved composting, Agric. Food 3 (2021) 85–90, https://doi.org/10.13140/RG.2.2.13546.95689. [47] Y. Salama, M. Chennaoui, M. El Amraoui, M. Mountadar, A review of compost produced from biological wastes: sugarcane industry waste, Int. J. Food Sci. Biotechnol. 1 (2017) 24, https://doi.org/10.11648/j.ijfsb.20160101.14. [48] J. Havukainen, J. Hiltunen, L. Puro, M. Horttanainen, Applicability of a field portable X-ray fluorescence for analysing elemental concentration of waste samples, Waste Manag. 83 (2019) 6–13, https://doi.org/10.1016/j.wasman.2018.10.039. [49] M. Irshad, M. Inoue, M. Shezadi, T. Khan, Faridullah, Ammonium, phosphorus and potassium release from animal manure during composting, J. Food, Agric. Environ. 9 (2011) 629–631. [50] W.M. Zhang, C.X. Yu, X.J. Wang, L. Hai, Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn stover mix composting, Bioresour. Technol. 297 (2020), 122410, https://doi.org/10.1016/j.biortech.2019.122410. [51] S. Wu, Z. Shen, C. Yang, Y. Zhou, X. Li, G. Zeng, S. Ai, H. He, Effects of C/N ratio and bulking agent on speciation of Zn and Cu and enzymatic activity during pig manure composting, Int. Biodeterior. Biodegrad. 119 (2017) 429–436, https://doi.org/10.1016/j.ibiod.2016.09.016. [52] M. Kumar, Y.L. Ou, J.G. Lin, Co-composting of green waste and food waste at low C/N ratio, Waste Manag. 30 (2010) 602–609, https://doi.org/10.1016/j.wasman.2009.11.023. [53] V. Oreopoulou, W. Russ, Utilisation of by-products and treatment of waste in the food industry, Util. By-Prod. Treat. Waste Food Ind. (2007) 1–316, https://doi.org/10.1007/978-0-387-35766-9. [54] C. Castillo, A. Nesic, N. Urra, A. Maldonado, Influence of thermoplasticized starch on physical-chemical properties of new biodegradable carriers intended for forest industry, Int. J. Biol. Macromol. 122 (2019) 924–929, https://doi.org/10.1016/j.ijbiomac.2018.11.026. [55] F. Ruggero, R. Gori, C. Lubello, Methodologies to assess biodegradation of bioplastics during aerobic composting and anaerobic digestion: a review, Waste Manag. Res. 37 (2019) 959–975, https://doi.org/10.1177/0734242×19854127. [56] F. Luzi, E. Fortunati, A. Jiménez, D. Puglia, D. Pezzolla, G. Gigliotti, J.M. Kenny, A. Chiralt, L. Torre, Production and characterisation of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres, Ind. Crops Prod. 93 (2016) 276–289, https://doi.org/10.1016/j.indcrop.2016.01.045.
utb.fulltext.sponsorship The authors gratefully acknowledge the financial support of the Ministry of Education, Youth and Sports of the Czech Republic (Grant no. 8JPL19031), and the Internal Grant Agency of TBU in Zlín (Grant no. IGA/CPS/2021/002), and DKRVO (RP/CPS/2022/002) under the financial support of the Ministry of Education, Youth and Sports of the Czech Republic.
utb.wos.affiliation [Drohsler, Petra; Yasir, Muhammad; Fabian, Dalila Rubicela Cruz; Cisar, Jaroslav; Yadollahi, Zahra; Sedlarik, Vladimir] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Tr T Bati 5678, Zlin 76001, Czech Republic
utb.scopus.affiliation Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tr.T. Bati 5678, Zlín, 76001, Czech Republic
utb.fulltext.projects MSMT 8JPL19031
utb.fulltext.projects IGA/CPS/2021/002
utb.fulltext.projects DKRVO RP/CPS/2022/002
utb.fulltext.faculty University Institute
utb.fulltext.ou Centre of Polymer Systems
utb.identifier.jel -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam