Kontaktujte nás | Jazyk: čeština English
dc.title | Reprocessed magnetorheological elastomers with reduced carbon footprint and their piezoresistive properties | en |
dc.contributor.author | Munteanu, Andrei | |
dc.contributor.author | Ronzová, Alena | |
dc.contributor.author | Kutálková, Eva | |
dc.contributor.author | Dröhsler, Petra | |
dc.contributor.author | Moučka, Robert | |
dc.contributor.author | Kráčalík, Milan | |
dc.contributor.author | Bílek, Ondřej | |
dc.contributor.author | Mazlan, Saiful Amri | |
dc.contributor.author | Sedlačík, Michal | |
dc.relation.ispartof | Scientific Reports | |
dc.identifier.issn | 2045-2322 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022 | |
utb.relation.volume | 12 | |
utb.relation.issue | 1 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Nature Research | |
dc.identifier.doi | 10.1038/s41598-022-16129-y | |
dc.relation.uri | https://www.nature.com/articles/s41598-022-16129-y | |
dc.description.abstract | Despite the vast amount of studies based on magnetorheological elastomers (MREs), a very limited number of investigations have been initiated on their reprocessing. This paper presents a new type of recyclable MRE which is composed of thermoplastic polyurethane (TPU) and carbonyl iron particles (CI). The chosen TPU can be processed using injection moulding (IM), followed by several reprocessing cycles while preserving its properties. Numerous types of injection moulded and reprocessed MREs have been prepared for various particle concentrations. The effect of thermo-mechanical degradation on the recycled MREs has been investigated while simulating the reprocessing procedure. An apparent decrease in molecular weight was observed for all the examined matrices during the reprocessing cycles. These changes are attributed to the intermolecular bonding between the hydroxyl groups on the surface of the CI particles and the matrix which is studied in depth. The effect of reprocessing and the presence of magnetic particles is evaluated via tensile test, magnetorheology and piezoresistivity. These characterization techniques prove that the properties of our MREs are preserved at an acceptable level despite using 100% of recyclates while in real applications only up to 30% of recycled material is generally used. © 2022, The Author(s). | en |
utb.faculty | University Institute | |
utb.faculty | Faculty of Technology | |
dc.identifier.uri | http://hdl.handle.net/10563/1011055 | |
utb.identifier.obdid | 43884112 | |
utb.identifier.scopus | 2-s2.0-85134098598 | |
utb.identifier.wok | 000825428500046 | |
utb.identifier.pubmed | 35835843 | |
utb.source | j-scopus | |
dc.date.accessioned | 2022-07-27T09:08:40Z | |
dc.date.available | 2022-07-27T09:08:40Z | |
dc.description.sponsorship | IGA/CPS/2021/003, RP/CPS/2022/007; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT | |
dc.description.sponsorship | Internal Grant Agency of Tomas Bata University in Zlin [IGA/CPS/2021/003, RP/CPS/2022/007]; Ministry of Education, Youth and Sports of the Czech Republic | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Centre of Polymer Systems | |
utb.ou | Department of Production Engineering | |
utb.ou | Polymer Centre | |
utb.contributor.internalauthor | Munteanu, Andrei | |
utb.contributor.internalauthor | Ronzová, Alena | |
utb.contributor.internalauthor | Kutálková, Eva | |
utb.contributor.internalauthor | Dröhsler, Petra | |
utb.contributor.internalauthor | Moučka, Robert | |
utb.contributor.internalauthor | Bílek, Ondřej | |
utb.contributor.internalauthor | Sedlačík, Michal | |
utb.fulltext.affiliation | A. Munteanu1, A. Ronzova1,2, E. Kutalkova1, P. Drohsler1, R. Moucka1,3, M. Kracalik4, O. Bilek2, S.A. Mazlan5 & M. Sedlacik1,2✉ 1 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, 760 01 Zlín, Czech Republic. 2 Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, 760 01 Zlín, Czech Republic. 3 Polymer Centre, Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, 760 01 Zlín, Czech Republic. 4 Institute of Polymer Science, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria. 5 Engineering Materials and Structures (eMast) iKohza, Malaysia‑Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia. ✉email: [email protected] | |
utb.fulltext.dates | Received: 19 April 2022 Accepted: 5 July 2022 Published online: 14 July 2022 | |
utb.fulltext.references | 1. Ahamed, R., Choi, S. B. & Ferdaus, M. M. A state of art on magneto-rheological materials and their potential applications. J. Intell. Mater. Syst. Struct. 29(10), 2051–2095 (2018). 2. Saleh, T. A., Fadillah, G. & Ciptawati, E. Smart advanced responsive materials, synthesis methods and classifcations: From lab to applications. J. Polym. Res. 28, 6 (2021). 3. Carlson, J. D. & Jolly, M. R. MR fuid, foam and elastomer devices. Mechatronics 10(4–5), 555–569 (2000). 4. Sun, S. et al. Development of magnetorheological elastomers-based tuned mass damper for building protection from seismic events. J. Intell. Mater. Syst. Struct. 29(8), 1777–1789 (2018). 5. Komatsuzaki, T., Inoue, T. & Terashima, O. Broadband vibration control of a structure by using a magnetorheological elastomerbased tuned dynamic absorber. Mechatronics 40, 128–136 (2016). 6. Cvek, M., Moucka, R., Sedlacik, M., Babayan, V. & Pavlinek, V. Enhancement of radio-absorbing properties and thermal conductivity of polysiloxane-based magnetorheological elastomers by the alignment of filler particles. Smart Mater. Struct. 26, 9 (2017). 7. Cvek, M., Kutalkova, E., Moucka, R., Urbanek, P. & Sedlacik, M. Lightweight, transparent piezoresistive sensors conceptualized as anisotropic magnetorheological elastomers: A durability study. Int. J. Mech. Sci. 183, 10 (2020). 8. Fiorillo, A. S., Critello, C. D. & Pullano, S. A. Teory, technology and applications of piezoresistive sensors: A review. Sens. Actuators A. 281, 156–175 (2018). 9. Behrooz, M. & Gordaninejad, F. Tree-dimensional study of a one-way, fexible magnetorheological elastomer-based micro fuid transport system. Smart Mater. Struct. 25, 9 (2016). 10. Behrooz, M. & Gordaninejad, F. A fexible micro fuid transport system featuring magnetorheological elastomer. Smart Mater. Struct. 25, 2 (2016). 11. Murao, S., Mitsufuji, K., Hirata, K. & Miyasaka, F. Coupled analysis by viscoelastic body with rigid body for design of MRE soft actuator. Electr. Eng. Jpn. 203(3), 30–38 (2018). 12. Fu, Y. et al. A muscle-like magnetorheological actuator based on bidisperse magnetic particles enhanced fexible alginate-gelatin sponges. Smart Mater. Struct. 29, 1 (2020). 13. Kelley, C. R. & Kaufman, J. L. Towards wearable tremor suppression using dielectric elastomer stack actuators. Smart Mater. Struct. 30, 2 (2021). 14. Stoll, A., Mayer, M., Monkman, G. J. & Shamonin, M. Evaluation of highly compliant magneto-active elastomers with colossal magnetorheological response. J. Appl. Polym. Sci. 131, 2 (2014). 15. Plachy, T. et al. Impact of corrosion process of carbonyl iron particles on magnetorheological behavior of their suspensions. J. Ind. Eng. Chem. 66, 362–369 (2018). 16. Murin, I. V. et al. Structural-chemical transformations of alpha-Fe2O3 upon transport reduction. Solid State Ionics 133(3–4), 203–210 (2000). 17. Cvek, M., Mrlik, M., Sevcik, J. & Sedlacik, M. Tailoring performance, damping, and surface properties of magnetorheological elastomers via particle-grafing technology. Polymers 10, 12 (2018). 18. Perez, L. D., Zuluaga, M. A., Kyu, T., Mark, J. E. & Lopez, B. L. Preparation, characterization, and physical properties of multiwall carbon nanotube/elastomer composites. Polym. Eng. Sci. 49(5), 866–874 (2009). 19. Boczkowska, A., Awietjan, S. F. & Wroblewski, R. Microstructure-property relationships of urethane magnetorheological elastomers. Smart Mater. Struct. 16(5), 1924–1930 (2007). 20. Ju, B. X. et al. Dynamic mechanical properties of magnetorheological elastomers based on polyurethane matrix. Polym. Compos. 37(5), 1587–1595 (2016). 21. Grigorescu, R. M. et al. Development of thermoplastic composites based on recycled polypropylene and waste printed circuit boards. Waste Manage. 118, 391–401 (2020). 22. Datta, S., Naskar, K., Bhardwaj, Y. K. & Sabharwal, S. A study on dynamic rheological characterisation of electron beam crosslinked high vinyl styrene butadiene styrene block copolymer. Polym. Bull. 66(5), 637–647 (2011). 23. Wolfel, B. et al. Recycling and reprocessing of thermoplastic polyurethane materials towards nonwoven processing. Polymers 12(9), 13 (2020). 24. Vatandoost, H., Rakheja, S. & Sedaghati, R. Efects of iron particles’ volume fraction on compression mode properties of magnetorheological elastomers. J. Magn. Magn. Mater. 522, 14 (2021). 25. Winger, J., Schumann, M., Kupka, A. & Odenbach, S. Infuence of the particle size on the magnetorheological efect of magnetorheological elastomers. J. Magn. Magn. Mater. 481, 176–182 (2019). 26. Kwon, S. H., An, J. S., Choi, S. Y., Chung, K. H. & Choi, H. J. Poly(glycidyl methacrylate) coated soft-magnetic carbonyl iron/silicone rubber composite elastomer and its magnetorheology. Macromol. Res. 27(5), 448–453 (2019). 27. Kwon, S. H., Lee, C. J., Choi, H. J., Chung, K. H. & Jung, J. H. Viscoelastic and mechanical behaviors of magneto-rheological carbonyl iron/natural rubber composites with magnetic iron oxide nanoparticle. Smart Mater. Struct. 28, 4 (2019). 28. Sorokin, V. V. et al. Experimental study of the magnetic feld enhanced Payne efect in magnetorheological elastomers. Soft Matter 10(43), 8765–8776 (2014). 29. Fuensanta, M. & Martin-Martinez, J. M. Structural and viscoelastic properties of thermoplastic polyurethanes containing mixed soft segments with potential application as pressure sensitive adhesives. Polymers 13, 18 (2021). 30. Albozahid, M., Naji, H. Z., Alobad, Z. K. & Saiani, A. TPU nanocomposites tailored by graphene nanoplatelets: Te investigation of dispersion approaches and annealing treatment on thermal and mechanical properties. Polym. Bull. 1, 1–10 (2021). 31. Luo, Y. et al. Fabrication of thermoplastic polyurethane with functionalized MXene towards high mechanical strength, fameretardant, and smoke suppression properties. J. Colloid Interface Sci. 606, 223–235 (2022). 32. Bozyel, I., Keser, Y. I. & Gokcen, D. Triple mode and multi-purpose fexible sensor fabrication based on carbon black and thermoplastic polyurethane composite with propolis. Sens. Actuators A. 332, 17 (2021). 33. Wu, J. K., Gong, X. G., Chen, L., Xia, H. S. & Hu, Z. G. Preparation and characterization of isotropic polyurethane magnetorheological elastomer through in situ polymerization. J. Appl. Polym. Sci. 114(2), 901–910 (2009). 34. Wei, B., Gong, X. L. & Jiang, W. Q. Infuence of polyurethane properties on mechanical performances of magnetorheological elastomers. J. Appl. Polym. Sci. 116(2), 771–778 (2010). 35. Cookson, J. W. Teory of the Piezo-resistive efect. Phys. Rev. 1, 156–175 (2022). 36. Li, W. et al. Synergy of porous structure and microstructure in piezoresistive material for high-performance and fexible pressure sensors. ACS Appl. Mater. Interfaces. 13(16), 19211–19220 (2021). 37. Georgopoulou, A., Michel, S., Vanderborght, B. & Clemens, F. Piezoresistive sensor fber composites based on silicone elastomers for the monitoring of the position of a robot arm. Sens. Actuators A. 318, 11 (2021). 38. Zhang, Y. H., Xia, Z. B., Huang, H. & Chen, H. Q. A degradation study of waterborne polyurethane based on TDI. Polym. Testing 28(3), 264–269 (2009). 39. Hentschel, T. & Munstedt, H. Kinetics of the molar mass decrease in a polyurethane melt: A rheological study. Polymer 42(7), 3195–3203 (2001). 40. Cvek, M., Kracalik, M., Sedlacik, M., Mrlik, M. & Sedlarik, V. Reprocessing of injection-molded magnetorheological elastomers based on TPE matrix. Composites B 172, 253–261 (2019). 41. Lopez-Pamies, O. An exact result for the macroscopic response of particle-reinforced neo-Hookean solids. J. Appl. Mech. Trans. ASME. 77, 2 (2010). 42. Schrodner, M. & Pfug, G. Magnetomechanical properties of composites and fbers made from thermoplastic elastomers (TPE) and carbonyl iron powder (CIP). J. Magn. Magn. Mater. 454, 258–263 (2018). 43. Takahara, A., Coury, A. J., Hergenrother, R. W. & Cooper, S. L. Efect of soft segment chemistry on the biostability of segmented polyurethanes. I. In vitro oxidation. J. Biomed. Mater. Res. 25(3), 341–356 (1991). 44. Grigoryeva, O. P. et al. Te efect of multi-reprocessing on the structure and characteristics of thermoplastic elastomers based on recycled polymers. Polym. Sci. A 51(2), 216–225 (2009). 45. Cvek, M. et al. Synthesis of silicone elastomers containing silyl-based polymer grafed carbonyl iron particles: An efcient way to improve magnetorheological, damping, and sensing performances. Macromolecules 50(5), 2189–2200 (2017). 46. Rabindranath, R. & Bose, H., editors. On the mobility of iron particles embedded in elastomeric silicone matrix. 13th International Conference on Electrorheological Fluids and Magnetorheological Suspensions (ERMR) (2012). 47. Sulkowski, W. W. et al. Termogravimetric study of rubber waste-polyurethane composites. J. Term. Anal. Calorim. 78(3), 905–921 (2004). 48. Dwan’isa, J. P. L., Mohanty, A. K., Misra, M., Drzal, L. T. & Kazemizadeh, M. Novel soy oil based polyurethane composites: Fabrication and dynamic mechanical properties evaluation. J. Mater. Sci. 39(5), 1887–1890 (2004). 49. Barnes, H. A. A review of the rheology of filled viscoelastic systems. Rheol. Rev. 1, 1–36 (2003). 50. Rueda, M. M. et al. Rheology and applications of highly filled polymers: A review of current understanding. Prog. Polym. Sci. 66, 22–53 (2017). 51. Chung, D. D. L. A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing. J. Mater. Sci. 55(32), 15367–15396 (2020). | |
utb.fulltext.sponsorship | The authors wish to thank the Internal Grant Agency of Tomas Bata University in Zlín (Project No. IGA/CPS/2021/003) for its financial support. The authors A.R., A.M., E.K., R.M. and M.S. gratefully acknowledge project DKRVO (RP/CPS/2022/007) supported by the Ministry of Education, Youth and Sports of the Czech Republic. | |
utb.wos.affiliation | [Munteanu, A.; Ronzova, A.; Kutalkova, E.; Drohsler, P.; Moucka, R.; Sedlacik, M.] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Trida T Bati 5678, Zlin 76001, Czech Republic; [Ronzova, A.; Bilek, O.; Sedlacik, M.] Tomas Bata Univ Zlin, Fac Technol, Dept Prod Engn, Vavreckova 275, Zlin 76001, Czech Republic; [Moucka, R.] Tomas Bata Univ Zlin, Fac Technol, Polymer Ctr, Vavreckova 275, Zlin 76001, Czech Republic; [Kracalik, M.] Johannes Kepler Univ Linz, Inst Polymer Sci, Altenberger Str 69, A-4040 Linz, Austria; [Mazlan, S. A.] Univ Teknol Malaysia, Malaysia Japan Int Inst Technol MJIIT, Engn Mat & Struct eMast iKohza, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia | |
utb.scopus.affiliation | Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, Zlín, 760 01, Czech Republic; Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, Zlín, 760 01, Czech Republic; Polymer Centre, Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, Zlín, 760 01, Czech Republic; Institute of Polymer Science, Johannes Kepler University Linz, Altenberger Straße 69, Linz, 4040, Austria; Engineering Materials and Structures (eMast) iKohza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia | |
utb.fulltext.projects | IGA/CPS/2021/003 | |
utb.fulltext.projects | DKRVO(RP/CPS/2022/007) | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.ou | Centre of Polymer Systems | |
utb.fulltext.ou | Department of Production Engineering | |
utb.fulltext.ou | Polymer Centre | |
utb.identifier.jel | - |