Kontaktujte nás | Jazyk: čeština English
dc.title | Parameter identification of a delayed infinite-dimensional heat-exchanger process based on relay feedback and root loci analysis | en |
dc.contributor.author | Pekař, Libor | |
dc.contributor.author | Song, Mengjie | |
dc.contributor.author | Padhee, Subhransu | |
dc.contributor.author | Dostálek, Petr | |
dc.contributor.author | Zezulka, František | |
dc.relation.ispartof | Scientific Reports | |
dc.identifier.issn | 2045-2322 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022 | |
utb.relation.volume | 12 | |
utb.relation.issue | 1 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Nature Portfolio | |
dc.identifier.doi | 10.1038/s41598-022-13182-5 | |
dc.relation.uri | https://www.nature.com/articles/s41598-022-13182-5 | |
dc.description.abstract | The focus of this contribution is twofold. The first part aims at the rigorous and complete analysis of pole loci of a simple delayed model, the characteristic function of which is represented by a quasi-polynomial with a non-delay and a delay parameter. The derived spectrum constitutes an infinite set, making it a suitable and simple-enough representative of even high-order process dynamics. The second part intends to apply the simple infinite-dimensional model for relay-based parameter identification of a more complex model of a heating-cooling process with heat exchangers. Processes of this type and construction are widely used in industry. The identification procedure has two substantial steps. The first one adopts the simple model with a low computational effort using the saturated relay that provides a more accurate estimation than the standard on/off test. Then, this result is transformed to the estimation of the initial characteristic equation parameters of the complex infinite-dimensional heat-exchanger model using the exact dominant-pole-loci assignment. The benefit of this technique is that multiple model parameters can be estimated under a single relay test. The second step attempts to estimate the remaining model parameters by various numerical optimization techniques and also to enhance all model parameters via the Autotune Variation Plus relay experiment for comparison. Although the obtained unordinary time and frequency domain responses may yield satisfactory results for control tasks, the identified model parameters may not reflect the actual values of process physical quantities. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011016 | |
utb.identifier.obdid | 43884082 | |
utb.identifier.scopus | 2-s2.0-85131178889 | |
utb.identifier.wok | 000805846400028 | |
utb.identifier.pubmed | 35660770 | |
utb.source | J-wok | |
dc.date.accessioned | 2022-06-20T13:11:23Z | |
dc.date.available | 2022-06-20T13:11:23Z | |
dc.description.sponsorship | College of Polytechnics Jihlava [1170/10/2137, INT/2022/0002]; Czech Science Foundation; GACR [21-45465L] | |
dc.description.sponsorship | 1170/10/2137, INT/2022/0002; GAČR 21-45465L | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Department of Automation and Control Engineering | |
utb.contributor.internalauthor | Pekař, Libor | |
utb.contributor.internalauthor | Dostálek, Petr | |
utb.fulltext.affiliation | Libor Pekař http://orcid.org/0000-0002-2401-5886 1,2*, Mengjie Song http://orcid.org/0000-0001-6047-8813 3, Subhransu Padhee http://orcid.org/0000-0001-9946-4662 4, Petr Dostálek http://orcid.org/0000-0002-1965-1466 1 & František Zezulka http://orcid.org/0000-0002-4057-6018 2 1 Department of Automation and Control Engineering, Faculty of Applied Informatics, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic. 2 Department of Technical Studies, College of Polytechnics Jihlava, Tolstého 1556/16, 586 01 Jihlava, Czech Republic. 3 Department of Energy and Power Engineering, School of Mechanical Engineering, Beijing Institute of Technology, Engine East Building 125, Beijing 100081, China. 4 Department of Electrical and Electronics Engineering, Sambalpur University Institute of Information Technology, Burla, Sambalpur 769018, India. *email: [email protected] | |
utb.fulltext.dates | Received: 13 October 2021 Accepted: 20 May 2022 Published online: 03 June 2022 | |
utb.fulltext.references | 1. Leier, A. & Marquez-Lago, T. T. Delay chemical master equation: direct and closed-form solutions. Proc. R. Soc. A. 471(2173), 20150049 (2015). 2. Mehrkanoon, S., Shardt, Y. A. W., Suykens, J. A. K. & Ding, S. X. Estimating the unknown time delay in chemical processes. Eng. Appl. Artif. Intell. 55, 219–230 (2016). 3. Ozoegwu, C. & Eberhard, P. Stability analysis of multi-discrete delay milling with helix efects using a general order full-discretization method updated with a generalized integral quadrature. Mathematics 2020, 1003 (2020). 4. Stépán, G. Delay efects in the human sensory system during balancing. Philos. Trans. R. Soc. A 367(1891), 1195–1212 (2009). 5. Young, L.-S., Ruschel, S., Yanchuk, S. & Pereira, T. Consequences of delays and imperfect implementation of isolation in epidemic control. Sci. Rep. 9, 3505 (2019). 6. Zhang, Y., Zhao, H. & Zhang, Q. Te modeling and control of a singular biological economic system with time delay in a polluted environment. Discrete Dyn. Nat. Soc. 2016, 5036305 (2016). 7. Wang, Z., Liang, S., Molnar, C. A., Insperger, T. & Stépán, G. Parametric continuation algorithm for time-delay systems and bifurcation caused by multiple characteristic roots. Nonlinear Dyn. 103, 3241–3253 (2021). 8. Drame, A. K., Dochain, D., Winkin, J. J. & Wolenski, P. R. Periodic trajectories of distributed parameter biochemical systems with time delay. Appl. Math. Comput. 218(14), 7395–7405 (2012). 9. Hale, J. K. & Lunel, S. V. Introduction to Functional Diferential Equations (Springer, 1993). 10. Kolmanovskii, V. B. & Nosov, V. R. Stability of Functional Diferential Equations (Academic Press, 1986). 11. Prokop, R., Korbel, J. & Pekař, L. Algebraic principles as a tool for energy saving. Chem. Eng. Trans. 81, 793–798 (2020). 12. Vyhlídal, T. & Zítek, P. Control system design based on a universal frst order model with time delays. Acta Polytech. 44(4–5), 49–53 (2001). 13. Curtain, R. F. & Zwart, H. An Introduction to Infnite-Dimensional Linear Systems Teory (Springer, 1995). 14. Michiels, W. & Niculescu, S.-I. Stability, Control, and Computation for Time-Delay Systems: An Eigenvalue-based Approach 2nd edn. (SIAM, 2014). 15. Pekař, L. & Gao, Q. Spectrum analysis of LTI continuous-time systems with constant delays: A literature overview of some recent results. IEEE Access 6, 35457–35491 (2018). 16. Jankauskiene, I. & Rimas, J. A note on the use of step responses matrix and Lambert W function in the dynamics analysis of time delay systems. Inf. Technol. Control 46(2), 228–234 (2017). 17. Amrane, S., Bedouhene, F., Boussaada, I. & Niculescu, S.-I. On qualitative properties of low-degree quasi-polynomials: further remarks on the spectral abscissa and rightmost-roots assignment. Bull. Math. Soc. Sci. Math. Roum. 61(109), 361–381 (2018). 18. Vyhlídal, T. & Zítek, P. Mapping based algorithm for large-scale computation of quasi-polynomial zeros. IEEE Trans. Autom. Control 54(1), 171–177 (2009). 19. Engelborghs, K., Luzyanina, T. & Roose, D. Numerical bifurcation analysis of delay diferential equations using DDE-BIFTOOL. ACM Trans. Math. Sofw. 28(1), 1–21 (2002). 20. Bedouhene, F., Boussaada, I. & Niculescu, S.-I. Real spectral values coexistence and their efect on the stability of time-delay systems: Vandermonde matrices and exponential decay. C. R. Math. 358(9 10), 1011–1032 (2020). 21. Zítek, P. & Hlava, J. Anisochronic internal model control of time-delay systems. Control Eng. Pract. 9(5), 501–516 (2001). 22. Wang, Q.-G., Zhang, Z., Astrom, K. J. & Chek, L. S. Guaranteed dominant pole placement with PID controllers. J. Process Control 19(2), 349–352 (2009). 23. Boussaada, I., Niculescu, S.-I., Ati, A. E., Perez-Ramos, R. & Trabelsi, K. Multiplicity-induced dominancy in parametric secondorder delay diferential equations: Analysis and application in control design. ESAIM Control Optim. Calc. Var. 26, 57 (2020). 24. Zítek, P., Fišer, J. & Vyhlídal, T. Dimensional analysis approach to dominant three-pole placement in delayed PID control loops. J. Process Control 23, 1063–1074 (2013). 25. Xu, Q. & Wang, Z. Exact stability test of neutral delay diferential equations via a rough estimation of the testing integral. Int. J. Dyn. Control 2, 154–163 (2014). 26. Chen, X. & Dai, H. Stability analysis of time-delay systems using a contour integral method. Appl. Math. Comput. 273, 390–397 (2016). 27. Michiels, W., Engelborghs, K., Vansevant, P. & Roose, D. Continuous pole placement for delay equations. Automatica 38(5), 747–761 (2002). 28. Michiels, W. & Vyhlídal, T. An eigenvalue based approach for the stabilization of linear time-delay systems of neutral type. Automatica 41(6), 991–998 (2005). 29. Michiels, W., Vyhlídal, T. & Zítek, P. Control design for time-delay systems based on quasi-direct pole placement. J. Process Control 20(3), 337–343 (2010). 30. Pekař, L. & Matušů, R. A suboptimal shifing based zero-pole placement method for systems with delays. Int. J. Control Autom. 16(2), 594–608 (2018). 31. Vyhlídal, T., Michiels, W. & McGahan, P. Synthesis of a strongly stable state-derivative controller for a time delay system using constrained nonsmooth optimization. IMA. J. Math. Control Inf. 27(4), 437–455 (2010). 32. Özer, M. & İfar, A. Eigenvalue optimisation-based centralized and decentralised stabilisation of time-delay systems. Int. J. Control (2021) (in press). https://www.tandfonline.com/doi/abs/10.1080/00207179.2021.1906446. 33. Åström, K. J. & Hägglund, T. Automatic tuning of simple regulators with specifcations on phase and amplitude margins. Automatica 20(5), 645–651 (1984). 34. Liu, T., Wang, Q.-G. & Huang, H. P. A tutorial review on process identifcation from step or relay feedback test. J. Process Control 23(10), 1597–1623 (2013). 35. Yu, C. C. Autotuning of PID Controllers: A Relay Feedback Approach 2nd edn. (Springer, 2006). 36. Dharmalingam, K. & Tangavelu, T. Parameter estimation using relay feedback. Rev. Chem. Eng. 35(4), 505–529 (2019). 37. Liu, T. & Gao, F. Industrial Process Identifcation and Control Design: Step-Test and Relay-Experiment-Based Methods (Springer, 2012). 38. Marchetti, G. & Scali, C. Use of modifed relay techniques for the design of model-based controllers for chemical processes. Ind. Eng. Chem. Res. 39(9), 3325–3334 (2000). 39. Nikita, S. & Lee, M. Control of a wastewater treatment plant using relay auto-tuning. Korean J. Chem. Eng. 36, 505–512 (2019). 40. Toukhtarian, R., Darabi, M., Hatzikiriakos, S., Atsbha, H. & Boulet, B. Parameter identifcation of transport PDE/nonlinear ODE cascade model for polymer extrusion with varying die gap. Can. J. Chem. Eng. 99(5), 1158–1176 (2021). 41. Yu, S. & Li, X. Proportional-integral-derivative controller performance assessment and retuning based on general process response data. ACS Omega 6(15), 10207–10223 (2021). 42. Shen, S. H., Wu, J. S. & Yu, C. C. Use of biased-relay feedback for system identifcation. AIChE J. 42(4), 1174–1180 (1996). 43. Liu, T. & Gao, F. Alternative identifcation algorithms for obtaining a frst-order stable/unstable process model from a single relay feedback test. Ind. Eng. Chem. Res. 47(4), 1140–1149 (2008). 44. Liu, T., Gao, F. & Wang, Y. Q. A systematic approach for on-line identifcation of second-order process model from relay feedback test. AIChE J. 54(6), 1560–1578 (2008). 45. Pandey, S., Majhi, S. & Ghorai, P. A new modelling and identifcation scheme for time-delay systems with experimental investigation: A relay feedback approach. Int. J. Syst. Sci. 48(9), 1932–1940 (2017). 46. Wang, Q.-G., Hang, C. C. & Zou, B. Low-order modeling from relay feedback. Ind. Eng. Chem. Res. 36(2), 375–381 (1997). 47. Hofreiter, M. Fitting anisochronic models by method of moments for anisochronic control of time delay systems. Int. J. Math. Models Methods Appl. Sci. 10, 71–79 (2016). 48. Ma, M. D. & Zhu, X. J. A simple auto-tuner in frequency domain. Comput. Chem. Eng. 30(4), 581–586 (2006). 49. Wang, Q.-G., Hang, C. C. & Bi, Q. A technique for frequency response identifcation from relay feedback. IEEE Trans. Control Syst. Technol. 7(1), 122–128 (1999). 50. Taysom, B. S. & Sorensen, C. D. Adaptive relay autotuning under static and non-static disturbances with application to friction stir welding. ISA Trans. 97, 474–484 (2020). 51. Lee, J., Sung, S. W., Lee, F. Y., Baldea, M. & Edgar, T. F. Full closed-loop tests for the relay feedback autotuning of stable, integrating, and unstable processes. ACS Omega 4(20), 18760–18770 (2019). 52. Jeon, C. H., Cheon, Y. J., Lee, J. & Sung, S. W. Process identifcation method using relay feedback and backward integrals. Korean J. Chem. Eng. 28(6), 2116–2121 (2011). 53. Wang, P., Gu, D. Y. & Zhang, W. D. Modifed relay feedback identifcation based on describing function analysis. Ind. Eng. Chem. Res. 46(5), 1538–1546 (2007). 54. Wang, Q.-G., Hang, C. C. & Bi, Q. Process frequency response estimation from relay feedback. Control Eng. Pract. 5(9), 1293–1302 (1997). 55. Simhachalam, D., Talukder, S., Mudi, R. K. & Dey, C. Enhanced critical point assessment with relay feedback. Mechatron Syst. Control 46(4), 170–180 (2018). 56. Je, C. H., Lee, J., Sung, S. W. & Lee, D. H. Enhanced process activation method to remove harmonics and input nonlinearity. J. Process Control 19(2), 353–357 (2009). 57. Jeon, C. H., Cheon, Y. J., Kim, J. S., Lee, J. & Sung, S. W. Relay feedback methods combining sub-relays to reduce harmonics. J. Process Control 20(2), 228–234 (2010). 58. Kim, K. H., Bae, J. E., Chu, S. C. & Sung, S. W. Improved continuous-cycling method for PID autotuning. Processes 9(3), 509 (2021). 59. Shen, S.-H., Yu, H. & Yu, C. C. Use of saturation-relay feedback for autotune identifcation. Chem. Eng. Sci. 51, 1187–1198 (1996). 60. Park, B. E., Kim, K. H., Kang, H. S., Sung, S. W. & Lee, I.-B. Improved relay feedback method under noisy and disturbance environments. J. Chem. Eng. Jpn. 52(5), 430–438 (2019). 61. Lee, J., Lee, F. Y., Baldea, M. & Edgar, T. F. Methods of weighted moments for the relay feedback autotuning of conservative PI controllers. Comput. Chem. Eng. 136, 106797 (2020). 62. Kaya, I. & Atherton, D. P. Parameter estimation from relay autotuning with asymmetric limit cycle data. J. Process Control 11(4), 429–439 (2001). 63. Panda, R. C. & Yu, C.-C. Shape factor of relay response curves and its use in autotuning. J. Process Control 15(8), 893–906 (2005). 64. Åström, K. J. & Hägglund, T. PID Controllers: Teory, Design, and Tuning (Instrument Society of America, 1995). 65. Hofreiter, M. Relay feedback identifcation with additional integrator. IFAC-PapersOnLine 52(13), 66–71 (2019). 66. Bi, Q., Wang, Q.-G. & Hang, C. C. Relay-based estimation of multiple points on process frequency response. Automatica 33(9), 1753–1757 (1997). 67. Tan, K. K., Lee, T. H. & Wang, Q.-G. Enhanced automatic tuning procedure for process control of PI/PID controllers. AIChE J. 42(9), 2555–2562 (1996). 68. Ramana, K. V., Majhi, S. & Gogoi, A. K. Identifcation of DC–DC buck converter dynamics using relay feedback method with experimental validation. IET Circuits Devices Syst. 12(6), 777–784 (2018). 69. Li, W., Eskinat, E. & Luyben, W. L. An improved autotune identifcation method. Ind. Eng. Chem. Res. 30(7), 1530–1541 (1991). 70. Kim, Y. H. PI Controller tuning using modifed relay feedback method. J. Chem. Eng. Jpn. 28(1), 118–121 (1995). 71. Scali, C., Marchetti, G. & Semino, D. Relay and additional delay for identifcation and autotuning of completely unknown processes. Ind. Eng. Chem. Res. 38(5), 1987–1997 (1999). 72. Hofreiter, M. Alternative identifcation method using biased relay feedback. IFAC-PapersOnLine 51(11), 891–896 (2018). 73. Sánchez Moreno, J., Dormido Bencomo, S. & Díaz Martínez, J. M. Fitting of generic process models by an asymmetric short relay feedback experiment—Te n-shifing method. Appl. Sci. 11(4), 1651 (2021). 74. Hofreiter, M. Shifing method for relay feedback identifcation. IFAC-PapersOnLine 49(12), 1933–1938 (2016). 75. Liu, T. & Gao, F. A generalized approach for relay identifcation of time delay and nonminimum phase processes. Automatica 45(4), 1072–1079 (2009). 76. Ghorai, P., Majhi, S., Kasi, V. R. & Pandey, S. Parameter identifcation of delayed under-damped systems using on-line relay autotuning. IEEE Trans. Circuits Syst. II Exp. Briefs 66(7), 1197–1201 (2019). 77. Jacob, E. F. & Chidambaram, M. Design of controllers for unstable frst order plus time delay systems. Comput. Chem. Eng. 20(5), 579–584 (1996). 78. Liu, T. & Gao, F. Identifcation of integrating and unstable processes from relay feedback. Comput. Chem. Eng. 32(12), 3038–3056 (2008). 79. Marchetti, G., Scali, C. & Lewin, D. R. Identifcation and control of open-loop unstable processes by relay methods. Automatica 37(12), 2049–2055 (2001). 80. Majhi, S. & Atherton, D. P. Online tuning of controllers for an unstable FOPDT process. IEE Proc. Control Teory Appl. 147(4), 421–427 (2000). 81. Padhy, P. K. & Majhi, S. Relay based PI–PD design for stable and unstable FOPDT processes. Comput. Chem. Eng. 30(5), 790–796 (2006). 82. Berner, J., Soltesz, K., Hägglund, T. & Aström, K. J. An experimental comparison of PID autotuners. Control Eng. Pract. 73, 124–133 (2018). 83. Pekař, L. & Prokop, R. Saturation relay vs. relay transient identifcation tests for a TDS model. In Proceedings of the 27th European Conference on Modelling and Simulation, Alesund, Norway, 446–452 (2013). 84. Pekař, L. Modeling and identifcation of a time-delay heat exchanger plant. In Advanced Analytic and Control Techniques for Termal Systems with Heat Exchangers (ed. Pekař, L.) 23–48 (Academic Press, 2020). 85. Zítek, P. Time delay control system design using functional state models. CTU Reports (CTU Prague, 1998). 86. Hofreiter, M. Biased-relay feedback identifcation for time delay systems. IFAC-PapersOnLine 50(1), 14620–14625 (2017). 87. Hach, L., Hemzal, K. & Katoh, Y. Autotuning control design for heat exchanger-type plant with time delay. In Technical Computing Conference (Prague, Czech Republic, 2013). 88. Jin, Y., Sun, L., Hua, Q. & Chen, S. Experimental research on heat exchanger control based on hybrid time and frequency domain identifcation. Sustainability 10(8), 2667 (2018). 89. Srinivasan, A. & Lakshmi, P. Identifcation and control of Wiener type process applied to real-time heat exchanger. Asia Pac. J. Chem. Eng. 3(8), 622–629 (2008). 90. Hang, C. C., Åström, K. J. & Wang, Q.-G. Relay feedback auto-tuning of process controllers—A tutorial review. J. Process Control 12(1), 143–162 (2002). 91. Marquardt, D. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11(2), 431–441 (1963). 92. Nelder, J. A. & Mead, R. A simplex method for function minimization. Comput. J. 7, 308–313 (1965). 93. Fletcher, R. A. Modifed Marquardt subroutine for nonlinear least squares. Report AERE-R 6799 (Harwell, England, 1971). 94. Marshal, J. E., Gorecki, H., Walton, K. & Korytowski, A. Time-Delay Systems, Stability and Performance Criteria with Application (Ellis Horwood Limited, 1992). 95. Hlava, J. Anisochronic Internal Model Control of Time Delay Systems. Dissertation thesis (CTU FME, Prague, 1998). 96. Pekař, L. Root locus analysis of a retarded quasi-polynomial. WSEAS Trans. Syst. Control 6(3), 79–91 (2011). 97. Umar, A. O., Sulaiman, I. M., Mamat, M., Waziri, M. Y. & Zemri, N. On damping parameters of Levenberg–Marquardt algorithm for nonlinear least square problems. J. Phys. Conf. Ser. 1734, 012018 (2021). 98. Byrski, A. et al. Socio-cognitively inspired ant colony optimization. J. Comput. Sci. 21, 397–406 (2017). | |
utb.fulltext.sponsorship | This research was supported by the College of Polytechnics Jihlava, under grants no. 1170/10/2137 and INT/2022/0002 "Identification and Control of Time-Delay Systems via Parameter Optimization Methods", and by The Czech Science Foundation under grant no. GACR 21-45465L. P.D. has taken a picture in Fig. 8. | |
utb.wos.affiliation | [Pekar, Libor; Dostalek, Petr] Tomas Bata Univ Zlin, Fac Appl Informat, Dept Automat & Control Engn, Nam TG Masaryka 5555, Zlin 76001, Czech Republic; [Pekar, Libor; Zezulka, Frantisek] Coll Polytech Jihlava, Dept Tech Studies, Tolsteho 1556-16, Jihlava 58601, Czech Republic; [Song, Mengjie] Beijing Inst Technol, Sch Mech Engn, Dept Energy & Power Engn, Engine East Bldg 125, Beijing 100081, Peoples R China; [Padhee, Subhransu] Sambalpur Univ Inst Informat Technol, Dept Elect & Elect Engn, Burla 769018, Sambalpur, India | |
utb.scopus.affiliation | Department of Automation and Control Engineering, Faculty of Applied Informatics, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, Zlín, 760 01, Czech Republic; Department of Technical Studies, College of Polytechnics Jihlava, Tolstého 1556/16, Jihlava, 586 01, Czech Republic; Department of Energy and Power Engineering, School of Mechanical Engineering, Beijing Institute of Technology, Engine East Building 125, Beijing, 100081, China; Department of Electrical and Electronics Engineering, Sambalpur University Institute of Information Technology, Burla, Sambalpur, 769018, India | |
utb.fulltext.projects | 1170/10/2137 | |
utb.fulltext.projects | INT/2022/0002 | |
utb.fulltext.projects | 21-45465L | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.ou | Department of Automation and Control Engineering |