Publikace UTB
Repozitář publikační činnosti UTB

Process-induced morphology of poly(butylene adipate terephthalate)/poly(lactic acid) blown extrusion films modified with chain-extending cross-linkers

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Process-induced morphology of poly(butylene adipate terephthalate)/poly(lactic acid) blown extrusion films modified with chain-extending cross-linkers en
dc.contributor.author Cardoso Azevedo, Juliana Vanessa
dc.contributor.author Ramakers-van Dorp, Esther
dc.contributor.author Grimmig, Roman
dc.contributor.author Hausnerová, Berenika
dc.contributor.author Möginger, Bernhard
dc.relation.ispartof Polymers
dc.identifier.issn 2073-4360 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 14
utb.relation.issue 10
dc.type article
dc.language.iso en
dc.publisher MDPI
dc.identifier.doi 10.3390/polym14101939
dc.relation.uri https://www.mdpi.com/2073-4360/14/10/1939
dc.subject poly(butylene adipate terephthalate) en
dc.subject poly(lactic acid) en
dc.subject chain-extending cross-linker en
dc.subject process-induced morphology en
dc.subject blown film extrusion en
dc.description.abstract Process-induced changes in the morphology of biodegradable polybutylene adipate terephthalate (PBAT) and polylactic acid (PLA) blends modified with various multifunctional chain-extending cross-linkers (CECLs) are presented. The morphology of unmodified and modified films produced with blown film extrusion is examined in an extrusion direction (ED) and a transverse direction (TD). While FTIR analysis showed only small peak shifts indicating that the CECLs modify the molecular weight of the PBAT/PLA blend, SEM investigations of the fracture surfaces of blown extrusion films revealed their significant effect on the morphology formed during the processing. Due to the combined shear and elongation deformation during blown film extrusion, rather spherical PLA islands were partly transformed into long fibrils, which tended to decay to chains of elliptical islands if cooled slowly. The CECL introduction into the blend changed the thickness of the PLA fibrils, modified the interface adhesion, and altered the deformation behavior of the PBAT matrix from brittle to ductile. The results proved that CECLs react selectively with PBAT, PLA, and their interface. Furthermore, the reactions of CECLs with PBAT/PLA induced by the processing depended on the deformation directions (ED and TD), thus resulting in further non-uniformities of blown extrusion films. en
utb.faculty Faculty of Technology
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1011000
utb.identifier.obdid 43883930
utb.identifier.scopus 2-s2.0-85130344822
utb.identifier.wok 000801908300001
utb.identifier.pubmed 35631822
utb.source J-wok
dc.date.accessioned 2022-06-17T09:36:15Z
dc.date.available 2022-06-17T09:36:15Z
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic - DKRVO [RP/CPS/2022/003]
dc.description.sponsorship RP/CPS/2022/003; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Cardoso Azevedo, Juliana Vanessa
utb.contributor.internalauthor Hausnerová, Berenika
utb.fulltext.affiliation Juliana V. C. Azevedo 1,2,3,4 https://orcid.org/0000-0002-1534-1436 , Esther Ramakers-van Dorp 2 , Roman Grimmig 2 https://orcid.org/0000-0003-1708-6018 , Berenika Hausnerova 1,4, * https://orcid.org/0000-0002-6368-7896 and Bernhard Möginger 2 1 Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, 760 01 Zlín, Czech Republic; [email protected] 2 Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, von Liebig Str. 20, 53359 Rheinbach, Germany; [email protected] (E.R.-v.D.); [email protected] (R.G.); [email protected] (B.M.) 3 BIO-FED, Branch of AKRO-PLASTIC GmbH, BioCampus Cologne, Nattermannallee 1, 50829 Köln, Germany 4 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic * Correspondence: [email protected]
utb.fulltext.dates Received: 19 April 2022 Accepted: 3 May 2022 Published: 10 May 2022
utb.fulltext.references 1. European Bioplastics. Bioplastics Packaging—Combining Performance with Sustainability. Available online: https://docs.european-bioplastics.org/publications/fs/EUBP_FS_Packging.pdf (accessed on 1 November 2021). 2. Suwanamornlert, P.; Kerddonfag, N.; Sane, A.; Chinsirikul, W.; Zhou, W.; Chonhencho, V. Poly(lactic acid)/poly(butylene-succinate-co-adipate) (PLA/PBSA) blend films containing thymol as alternative to synthetic preservatives for active packaging of bread. Food Packag. Shelf Life 2020, 25, 100515. http://doi.org/10.1016/j.fpsl.2020.100515 3. Palai, B.; Mohanty, S.; Nayak, S.K. Synergistic effect of polylactic acid (PLA) and Poly(butylene succinate-co-adipate) (PBSA) based sustainable, reactive, super toughened eco-composite blown films for flexible packaging applications. Polym. Test. 2020, 83, 106130. http://doi.org/10.1016/j.polymertesting.2019.106130 4. McKeen, L.W. Permeability Properties of Plastics and Elastomers, 4th ed.; Plastics Design Library: Chadds Ford, PA, USA, 2016; pp. 41–60. 5. Wagner, J.R., Jr. Multilayer Flexible Packaging, 2nd ed.; Plastics Design Library: Chadds Ford, PA, USA, 2016; pp. 137–145. 6. Ashter, S.A. Introduction to Bioplastics Engineering; Plastics Design Library: Chadds Ford, PA, USA, 2016; pp. 179–209. 7. Cantor, K. Blown Film Extrusion, 2nd ed.; Carl Hanser Verlag GmbH & Co. KG: München, Germany, 2011. 8. Rigolin, T.R.; Costa, L.C.; Chinellato, M.A.; Muñoz, P.A.R.; Bettini, S.H.P. Chemical modification of poly(lactic acid) and its use as matrix in poly(lactic acid) poly(butylene adipate-co-terephthalate) blends. Polym. Test. 2017, 63, 542–549. http://doi.org/10.1016/j.polymertesting.2017.09.010 9. Pietrosanto, A.; Scarfato, P.; Maio, L.D.; Incarnato, L. Development of Eco-Sustainable PBAT-Based Blown Films and Performance Analysis for Food Packaging Applications. Materials 2020, 13, 5395. http://doi.org/10.3390/ma13235395 10. Jiang, L.; Wolcott, M.P.; Zhang, J. Study of Biodegradable Polylactide/Poly(butylene adipate-co-terephthalate) Blends. Biomacromolecules 2006, 7, 199–207. http://doi.org/10.1021/bm050581q 11. Jian, J.; Xiangbin, Z.; Xianbo, H. An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)-PBAT. Adv. Ind. Eng. Polym. Res. 2020, 3, 19–26. http://doi.org/10.1016/j.aiepr.2020.01.001 12. Lackner, M.; Ivanič, F.; Kováčová, M.; Chodák, I. Mechanical properties and structure of mixtures of poly(butylene-adipate-coterephthalate) (PBAT) with thermoplastic starch (TPS). Int. J. Biobased Plast. 2021, 3, 126–138. http://doi.org/10.1080/24759651.2021.1882774 13. Ferreira, F.V.; Cividanes, L.S.; Gouveia, R.F.; Lona, L.M.F. An overview on properties and applications of poly(butylene adipate-coterephthalate)–PBAT based composites. Polym. Eng. Sci. 2019, 59, 7–15. http://doi.org/10.1002/pen.24770 14. Ivanič, F.; Kováčová, M.; Chodák, I. The effect of plasticizer selection on properties of blends poly(butylene adipate-coterephthalate) with thermoplastic starch. Eur. Polym. J. 2019, 116, 99–105. http://doi.org/10.1016/j.eurpolymj.2019.03.042 15. Pietrosanto, A.; Scarfato, P.; Maio, L.D.; Nobile, M.R.; Incarnato, L. Evaluation of the Suitability of Poly(Lactide)/Poly(Butylene-Adipate-co-Terephthalate) Blown Films for Chilled and Frozen Food Packaging Applications. Polymers 2020, 12, 804. http://doi.org/10.3390/polym12040804 16. Chiu, H.T.; Huang, S.Y.; Chen, Y.F.; Kuo, M.T.; Chiang, T.Y.; Chang, C.Y.; Wang, Y.H. Heat Treatment Effects on the Mechanical Properties and Morphologies of Poly (Lactic Acid)/Poly (Butylene Adipate-co-terephthalate) Blends. Int. J. Polym. Sci. 2013, 1, e951696. http://doi.org/10.1155/2013/951696 17. Hongdilokkul, P.; Keeratipinit, K.; Chawthai, S.; Hararak, B.; Seadan, M.; Suttiruengwong, S. A study on properties of PLA/PBAT from blown film process. IOP Conf. Ser. Mater. Sci. Eng. 2015, 87, e012112. http://doi.org/10.1088/1757-899X/87/1/012112 18. Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.; Ngouajio, M.; Fernandez, R.T. Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym. Degrad. Stab. 2010, 95, 2641–2647. http://doi.org/10.1016/j.polymdegradstab.2010.07.018 19. Witt, U.; Müller, R.J.; Deckwer, R.W.-D. Biodegradation of Polyester Copolymers Containing Aromatic Compounds. J. Macr. Sci. A 1995, 32, 851–856. http://doi.org/10.1080/10601329508010296 20. Tsuji, H. Poly(lactide) Stereocomplexes: Formation, Structure, Properties, Degradation, and Applications. Macromol. Biosci. 2005, 5, 569–597. http://doi.org/10.1002/mabi.200500062 http://www.ncbi.nlm.nih.gov/pubmed/15997437 21. Wang, B.; Jin, Y.; Kang, K.; Yang, N.; Weng, Y.; Huang, Z.; Men, S. Investigation on compatibility of PLA/PBAT blends modified by epoxy-terminated branched polymers through chemical micro-crosslinking. e-Polymer 2020, 20, 39–54. http://doi.org/10.1515/epoly-2020-0005 22. Su, S.; Duhme, M.; Kopitzky, R. Uncompatibilized PBAT/PLA Blends: Manufacturability, Miscibility and Properties. Materials 2020, 13, 4897. http://doi.org/10.3390/ma13214897 23. Al-Itry, R.; Amnawar, K.; Maazouz, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degr. Stab. 2012, 97, 1898–1914. http://doi.org/10.1016/j.polymdegradstab.2012.06.028 24. Dong, W.; Zou, B.; Yan, Y.; Ma, P.; Chen, M. Effect of Chain-Extenders on the Properties and Hydrolytic Degradation Behavior of the Poly(lactide)/Poly(butylene adipate-co-terephthalate) Blends. Int. J. Mol. Sci. 2013, 14, 20189–20203. http://doi.org/10.3390/ijms141020189 25. Arruda, L.C.; Megaton, M.; Bretas, R.E.S.; Ueki, M.N. Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym. Test. 2015, 43, 27–37. http://doi.org/10.1016/j.polymertesting.2015.02.005 26. Pan, H.; Li, Z.; Yang, J.; Li, X.; Ai, X.; Hao, Y.; Zhang, H.; Dong, L. The effect of MDI on the structure and mechanical properties of poly(lactic acid) and poly(butylene adipate-co-butylene terephthalate) blends. RSC Adv. 2018, 8, 4610–4623. http://doi.org/10.1039/C7RA10745E 27. Phetwarotai, W.; Zawong, M.; Phusunti, N.; Aht-Ong, D. Toughening and thermal characteristics of plasticized polylactide and poly(butylene adipate-co-terephthalate) blend films: Influence of compatibilization. Int. J. Bio. Macrom. 2021, 183, 346–357. http://doi.org/10.1016/j.ijbiomac.2021.04.172 http://www.ncbi.nlm.nih.gov/pubmed/33932412 28. Azevedo, J.V.C.; Dorp, E.R.; Hausnerová, B.; Möginger, B. The Effects of Chain-Extending Cross-Linkers on the Mechanical and Thermal Properties of Poly(butylene adipate terephthalate)/Poly(lactic acid) Blown Films. Polymers 2021, 13, 3092. http://doi.org/10.3390/polym13183092 http://www.ncbi.nlm.nih.gov/pubmed/34577992 29. BIO-FED Website. TDPG of M · VERA®B5029. Available online: https://bio-fed.com/fileadmin/bio-fed/PDFs/BIO-FED_TDPG_MVERA_B5029_B0155_2019-10-11.pdf (accessed on 27 November 2019). 30. SONGWON Website. SONGNOXTM Product Descriptions. Available online: https://www.songwon.com/products/songnox-1680 (accessed on 25 October 2019). 31. SpecialChem Webiste. Technical Datasheet of 1,3-Phenylene-bis-oxazoline. Available online: https://polymer-additives.specialchem.com/product/a-evonik-1-3-phenylene-bis-oxazoline (accessed on 25 October 2019). 32. Lanxess Website. Technical Datasheet of Stabaxol®P110. Available online: https://add.lanxess.com/fileadmin/product-import/stabaxol_p_110_en_rcr.pdf (accessed on 20 November 2020). 33. Nisshinbo ChemWebiste. Hydrolysis Stabilizer for Polyesters Including Biodegradable Resin. Available online: https://www.nisshinbo-chem.co.jp/english/products/carbodilite/poly.html (accessed on 25 October 2019). 34. Dil, E.J.; Carreau, P.J.; Favis, B.D. Morphology, Miscibility and Continuity Development in Poly(lactic acid)/Poly(butylene-adipate-co-terephthalate) Blends. Polymer 2015, 68, 202–212. http://doi.org/10.1016/j.polymer.2015.05.012 35. Standau, T.; Zhao, C.; Castellón, S.V.; Bonten, C.; Altstädt, V. Chemical Modification and Foam Processing of Polylactide (PLA). Polymers 2019, 11, 306. http://doi.org/10.3390/polym11020306 36. Yuniarto, K.; Purwanto, Y.A.; Purwanto, S.; Welt, B.A.; Purwadaria, H.K.; Sunarti, T.C. Infrared and Raman Studies on Polylactide Acid and Polyethylene Glycol-400 Blend. AIP Conf. Proc. 2016, 1725, 020101. http://doi.org/10.1063/1.4945555 37. Wu, A.; Huang, J.; Fan, R.; Xu, P.; Liu, G.; Li, S.Y. Effect of blending procedures and reactive compatibilizers on the properties of biodegradable poly(butylene adipate-co-terephthalate)/poly(lactic acid) blends. J. Polym. Eng. 2021, 41, 95–108. http://doi.org/10.1515/polyeng-2020-0161 38. Bleyan, D.; Svoboda, P.; Hausnerova, B. Specific interactions of low molecular weight analogues of carnauba wax and polyethylene glycol binders of ceramic injection moulding feedstocks. Ceram. Int. 2015, 41, 3975–3982. http://doi.org/10.1016/j.ceramint.2014.11.082
utb.fulltext.sponsorship The author B.H. acknowledges the Ministry of Education, Youth and Sports of the Czech Republic - DKRVO (RP/CPS/2022/003).
utb.wos.affiliation [Azevedo, Juliana V. C.; Hausnerova, Berenika] Tomas Bata Univ Zlin, Fac Technol, Vavreckova 275, Zlin 76001, Czech Republic; [Azevedo, Juliana V. C.; Ramakers-van Dorp, Esther; Grimmig, Roman; Moeginger, Bernhard] Univ Appl Sci Bonn Rhein Sieg, Dept Nat Sci, Liebig Str 20, D-53359 Rheinbach, Germany; [Azevedo, Juliana V. C.] Branch AKRO Plast GmbH, BIO FED, BioCampus Cologne,Nattermannallee 1, D-50829 Cologne, Germany; [Azevedo, Juliana V. C.; Hausnerova, Berenika] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Nam TG Masaryka 5555, Zlin 76001, Czech Republic
utb.scopus.affiliation Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, Zlín, 760 01, Czech Republic; Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, von Liebig Str. 20, Rheinbach, 53359, Germany; BIO-FED, Branch of AKRO-PLASTIC GmbH, BioCampus Cologne, Nattermannallee 1, Köln, 50829, Germany; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, Zlín, 760 01, Czech Republic
utb.fulltext.projects RP/CPS/2022/003
utb.fulltext.faculty Faculty of Technology
utb.fulltext.ou -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International