Publikace UTB
Repozitář publikační činnosti UTB

Crystallization kinetics and structural properties of nanocrystalline europium-yttrium-titanate (Eu0.5Y0.5)2Ti2O7

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Crystallization kinetics and structural properties of nanocrystalline europium-yttrium-titanate (Eu0.5Y0.5)2Ti2O7 en
dc.contributor.author Mrázek, Jan
dc.contributor.author Bysakh, Sandip
dc.contributor.author Skála, Roman
dc.contributor.author Mráček, Aleš
dc.contributor.author Dhar, Anirban
dc.contributor.author Bartoň, Ivo
dc.contributor.author Kašík, Ivan
dc.relation.ispartof Advanced Powder Technology
dc.identifier.issn 0921-8831 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1568-5527 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 33
utb.relation.issue 3
dc.type article
dc.language.iso en
dc.publisher Elsevier B.V.
dc.identifier.doi 10.1016/j.apt.2022.103501
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0921883122000796
dc.subject nucleation en
dc.subject sol-gel en
dc.subject nanomaterials en
dc.subject rare earth compounds en
dc.description.abstract We present a versatile sol–gel approach for nanocrystalline (Eu0.5Y0.5)2Ti2O7. We determined the crystallization kinetics of the nucleation and the nucleation mechanism. The crystallization temperature was 1050.1 ± 0.8 K, and the activation energy of crystallization was 605 kJ mol−1. The nanocrystal growth started by homogenous nucleation with a constant nucleation rate, and the nanocrystal growth was limited by mass transfer through the phase boundary. The crystal structure of (Eu0.5Y0.5)2Ti2O7 was refined from the powder diffraction data using the Rietveld method, and the results were compared with the data recorded for the isostructural compounds, Eu2Ti2O7 and Y2Ti2O7. We proved the existence of a single phase of (Eu0.5Y0.5)2Ti2O7 and the regular distribution of Eu3+ and Y3+ ions inside the crystal lattice. The results provide key information regarding the crystallization properties and crystal structure of nanocrystalline (Eu0.5Y0.5)2Ti2O7. This knowledge is necessary for preparing pure nanocrystalline powders with tailored structural properties that are suitable for photonic applications. © 2022 The Society of Powder Technology Japan en
utb.faculty Faculty of Technology
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1010874
utb.identifier.obdid 43883773
utb.identifier.scopus 2-s2.0-85124799480
utb.identifier.wok 000829861000012
utb.identifier.coden APTEE
utb.source j-scopus
dc.date.accessioned 2022-03-15T22:10:58Z
dc.date.available 2022-03-15T22:10:58Z
dc.description.sponsorship Grantová Agentura České Republiky, GA ČR: 21-45431L, RVO67985831
dc.description.sponsorship Czech Science Foundation [21-45431L]; Institute of Geology of the CAS Research Plan [RVO67985831]
dc.description.sponsorship Czech Science Foundation [21-45431L]; Institute of Geology of the CAS Research Plan [RVO67985831]
utb.ou Department of Physics and Engineering
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Mrázek, Jan
utb.contributor.internalauthor Mráček, Aleš
utb.fulltext.affiliation Jan Mrázek a,b,*, Sandip Bysakh c, Roman Skála d, Aleš Mráček b,e, Anirban Dhar c, Ivo Bartoň a, Ivan Kašík a a The Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 57, 18251 Prague 8, Czech Republic b Department of Physics and Engineering, Faculty of Technology, Tomas Bata University in Zlín, nám. Vavrečkova 275, 760 01 Zlín, Czech Republic c Central Glass and Ceramic Research Institute, 196 Raja S. C. Mullick Road, Kolkata 700032, India d Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165 00 Prague 6, Czech Republic e Centre of Polymer Systems, Tomas Bata University in Zlín, T. Bati 5678, 760 01 Zlín, Czech Republic * Corresponding author at: Institute of Photonics and Electronics AS CR, v.v.i, Chaberská 57, 8251 Prague 8. Czech Republic. E-mail address: [email protected] (J. Mrázek).
utb.fulltext.dates Received 14 October 2021 Received in revised form 8 February 2022 Accepted 10 February 2022
utb.fulltext.references [1] M. Glerup, O.F. Nielsen, F.W. Poulsen, The structural transformation from the pyrochlore structure, A(2)B(2)O(7), to the fluorite structure, AO(2), studied by Raman spectroscopy and defect chemistry modeling, J. Solid State Chem. 160(1) (2001) 25–32, https://doi.org/10.1006/jssc.2000.9142. [2] S.T. Bramwell, M.J.P. Gingras, Spin ice state in frustrated magnetic pyrochlore materials, Science 294 (5546) (2001) 1495–1501. [3] J.S. Gardner, M.J.P. Gingras, J.E. Greedan, Magnetic pyrochlore oxides, Rev. Mod. Phys. 82 (1) (2010) 53–107, https://doi.org/10.1103/RevModPhys.82.53. [4] K. Vlaskova, P. Proschek, M. Divis, D. Le, R.H. Colman, M. Klicpera, Magnetic properties and crystal field splitting of the rare-earth pyrochlore Er2Ir2O7, Phys. Rev. B. 102 (2020), https://doi.org/10.1103/PhysRevB.102.054428. [5] P. Jenouvrier, M. Langlet, R. Rimet, J. Fick, Influence of crystallisation on the photoluminescence properties of Y2-xErxTi2O7 sol-gel thin films, Appl. Phys. AMater. Sci. Process. 77 (5) (2003) 687–692, https://doi.org/10.1007/s00339-002-1886-6. [6] B.P. Singh, A.K. Parchur, R.K. Singh, A.A. Ansari, P. Singh, S.B. Rai, Structural and up-conversion properties of Er3+ and Yb3+ co-doped Y2Ti2O7 phosphors, PCCP 15 (2013) 3480–3489, https://doi.org/10.1039/c2cp44195k. [7] J. Mrázek, S. Vytykáčová, J. Buršík, V. Puchý, V. Girman, P. Peterka, I. Kašík, Solgel route to nanocrystalline Eu2Ti2O7 films with tailored structural and optical properties, J. Am. Ceram. Soc. 102 (11) (2019) 6713–6723. [8] Y. Guo, D. Wang, X. Zhao, F. Wang, Fabrication, microstructure and upconversion luminescence of Yb3+/Ln(3+) (Ln=Ho, Er, Tm) co-doped Y2Ti2O7 ceramics, Mater. Res. Bull. 73 (2016) 84–89, https://doi.org/10.1016/j.materresbull.2015.08.033. [9] T. Orihashi, T. Nakamura, S. Adachi, A. Srivastava, Synthesis and Unique Photoluminescence Properties of Eu2Ti2O7 and Eu2TiO5, J. Am. Ceram. Soc. 99(9) (2016) 3039–3046. [10] J. Schell, S. Kamba, M. Kachlik, K. Maca, J. Drahokoupil, B.R. Rano, J. Nuno Gonçalves, T. Thanh Dang, A. Costa, C. Noll, R. Vianden, D.C. Lupascu, Thermal annealing effects in polycrystalline EuTiO3 and Eu2Ti2O7, AIP Adv. 9 (12) (2019) 125125, https://doi.org/10.1063/1.5115466. [11] V.V. Popov, A.P. Menushenkov, A.Y. Molokova, A.A. Ivanov, S.G. Rudakov, N.V. Boyko, A.A. Yastrebtsev, E.V. Khramov, R.D. Svetogorov, V.V. Kurilkin, V.Y. Murzin, A.B. Kalinko, K.V. Ponkratov, N.A. Tsarenko, I.V. Shchetinin, Rearrangement in the local, electronic and crystal structure of europium titanates under reduction and oxidation, J. Alloy. Compd. 831 (2020), https://doi.org/10.1016/j.jallcom.2020.154752. [12] B. Milicevic, S. Kuzman, S.J. Porobic, M. Marinovic-Cincovic, M.D. Dramicanin, Non-isothermal crystallization kinetics of the heavy-group lanthanide dititanates, Opt. Mater. 74 (2017) 86–92, https://doi.org/10.1016/j.optmat.2017.03.058. [13] J. Mrazek, M. Surynek, S. Bakardjieva, J. Bursik, I. Kasik, Synthesis and crystallization mechanism of europium-titanate Eu2Ti2O7, J. Cryst. Growth 391 (2014) 25–32, https://doi.org/10.1016/j.jcrysgro.2013.12.045. [14] B. Milicevic, M. Marinovic-Cincovic, M.D. Dramicanin, Non-isothermal crystallization kinetics of Y2Ti2O7, Powder Technol. 310 (2017) 67–73, https://doi.org/10.1016/j.powtec.2017.01.001. [15] O.S. Dymshits, P.A. Loiko, N.A. Skoptsov, A.M. Malyarevich, K.V. Yumashev, A.A. Zhilin, I.P. Alekseeva, M.Y. Tsenter, K. Bogdanov, Structure and upconversion luminescence of transparent glass-ceramics containing (Er, Yb)2(Ti, Zr)2O7 nanocrystals, J. Non-Cryst. Solids 409 (2015) 54–62, https://doi.org/10.1016/j.jnoncrysol.2014.11.012. [16] J. Mrazek, M. Potel, J. Bursik, A. Mracek, A. Kallistova, S. Jonasova, J. Bohacek, I. Kasik, Sol-gel synthesis and crystallization kinetics of dysprosium-titanate Dy2Ti2O7 for photonic applications, Mater. Chem. Phys. 168 (2015) 159–167, https://doi.org/10.1016/j.matchemphys.2015.11.015. [17] J. Málek, T. Mitsuhashi, Testing method for the Johnson-Mehl-Avrami equation in kinetic analysis of crystallization processes, J. Am. Ceram. Soc. 83 (8) (2000) 2103–2105. [18] L.A. Pérez-Maqueda, J.M. Criado, J. Málek, Combined kinetic analysis for crystallization kinetics of non-crystalline solids, J. Non-Cryst. Solids 320 (1-3) (2003) 84–91. [19] J.W. Christian, The Theory of Transformations in Metals and Alloys, Pergamon, 2002. [20] Z. Chen, M. Wang, H. Wang, Z. Le, G. Huang, L. Zou, Z. Liu, D. Wang, Q. Wang, W. Gong, Fabrication of Y2Ti2O7: Yb3+, Ho3+ nanoparticles by a gel-combustion approach and upconverting luminescent properties, J. Alloy. Compd. 608 (2014) 165–169, https://doi.org/10.1016/j.jallcom.2014.04.101. [21] J. Mrázek, I. Kašík, J. Aubreckt, O. Podrazký, J. Cajzl, P. Peterka, Nanocrystalline Ceramic Phosphors for High-Power Lasers Operating at 2lm, in: 2019 21st International Conference on Transparent Optical Networks (ICTON), 2019, pp. 1–4, https://doi.org/10.1109/ICTON.2019.8839995. [22] S. Vytykacova, J. Mrazek, V. Puchy, R. Dzunda, R. Skala, P. Peterka, I. Kasik, Solgel route to highly transparent (Ho0.05Y0.95)2Ti2O7 thin films for active optical components operating at 2 mu m, Optical Materials Express. 78 (2018) 415–420, https://doi.org/10.1016/j.optmat.2018.02.049. [23] Bruker AXS, TOPAS V5: General profile and structure analysis software for powder diffraction data. - User’s Manual, (2014). [24] E.J. Harvey, S.E. Ashbrook, G.R. Lumpkin, S.A.T. Redfern, Characterisation of the (Y1-xLax)2Ti2O7 system by powder diffraction and nuclear magnetic resonance methods, J. Mater. Chem. 16 (48) (2006) 4665–4674. [25] E. Chtoun, L. Hanebali, P. Garnier, J. Kiat, X-Rays and neutrons rietveld analysis of the solid solutions (1–x)A(2)Ti(2)O(7–x)MgTiO(3) (A = Y or Eu), European Journal of Solid State And, Inorg. Chem. 34 (1997) 553–561. [26] G. Starukh, S. Toscani, S. Boursicot, L. Spanhel, Photoactivity of sol-gel derived nitridated ZnxTiyOz-films, Zeitschrift Fur Physikalische Chemie-International Journal Of Research In Physical Chemistry & Chemical, Physics. 221 (2007) 349–360, https://doi.org/10.1524/zpch.2007.221.3.349. [27] J. Baltrusaitis, J. Schuttlefield, J.H. Jensen, V.H. Grassian, FTIR spectroscopy combined with quantum chemical calculations to investigate adsorbed nitrate on aluminium oxide surfaces in the presence and absence of co-adsorbed water, PCCP 9 (2007) 4970–4980, https://doi.org/10.1039/b705189a. [28] D. Boyer, G. Bertrand-Chadeyron, R. Mahiou, Structural and optical characterizations of YAG : Eu3+ elaborated by the sol-gel process, Opt. Mater. 26 (2004) 101–105, https://doi.org/10.1016/j.optmat.2003.11.005. [29] M. Lasocka, Effect of scanning rate on glass-transition temperature of splatcooled Te-85-Ge-15, Mater. Sci. Eng. 23 (1976) 173–177, https://doi.org/10.1016/0025-5416(76)90189-0. [30] M.R. Mohammadi, D.J. Fray, Synthesis and characterisation of nanostructured neodymium titanium oxides by sol-gel process: Controlling the phase composition, crystal structure and grain size, Mater. Chem. Phys. 122 (2-3) (2010) 512–523, https://doi.org/10.1016/j.matchemphys.2010.03.036. [31] J. Llopiz, M.M. Romero, A. Jerez, Y. Laureiro, Generalization of the Kissinger equation for several kinetic-models, Thermochim Acta 256 (1995) 205–211, https://doi.org/10.1016/0040-6031(94)02109-2. [32] J.A. Augis, J.E. Bennett, Calculation of avrami parameters for heterogeneous solid-state reactions using a modification of kissinger method, J. Therm. Anal. 13 (1978) 283–292, https://doi.org/10.1007/BF01912301. [33] T. Ozawa, A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Jpn. 38 (1965) 1881–1886, https://doi.org/10.1246/bcsj.38.1881. [34] R.M. Almeida, A.C. Marques, A. Chiasera, A. Chiappini, M. Ferrari, Rare-earth doped photonic crystal microcavities prepared by sol–gel, J. Non-Cryst. Solids 353 (5-7) (2007) 490–493, https://doi.org/10.1016/j.jnoncrysol.2006.10.015. [35] J. Mrázek, P. Vařák, J. Aubrecht, S. Vytykáčová, Y. Baravets, I. Kašík, Nanocrystalline Ceramic Luminophores for Short- and Mid-Infrared, in: 2020 22nd International Conference on Transparent Optical Networks (ICTON), 2020, pp. 1–4, https://doi.org/10.1109/ICTON51198.2020.9203154.
utb.fulltext.sponsorship The authors acknowledge the financial support of the Czech Science Foundation under contract N°21-45431L. This research was partially supported by the Institute of Geology of the CAS Research Plan RVO67985831.
utb.wos.affiliation [Mrazek, Jan; Barton, Ivo; Kasik, Ivan] Czech Acad Sci, Inst Photon & Elect, Chaberska 57, Prague 18251 8, Czech Republic; [Mrazek, Jan; Mracek, Ales] Tomas Bata Univ Zlin, Fac Technol, Dept Phys & Engn, Nam Vavreckova 275, Zlin 76001, Czech Republic; [Bysakh, Sandip; Dhar, Anirban] Cent Glass & Ceram Res Inst, 196 Raja SC Mullick Rd, Kolkata 700032, India; [Skala, Roman] Czech Acad Sci, Inst Geol, Rozvojova 269, Prague 16500 6, Czech Republic; [Mracek, Ales] Tomas Bata Univ Zlin, Ctr Polymer Syst, T Bati 5678, Zlin 76001, Czech Republic
utb.scopus.affiliation The Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 57, Prague 8, 18251, Czech Republic; Department of Physics and Engineering, Faculty of Technology, Tomas Bata University in Zlín, nám. Vavrečkova 275, Zlín, 760 01, Czech Republic; Central Glass and Ceramic Research Institute, 196 Raja S. C. Mullick Road, Kolkata, 700032, India; Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, Prague 6, 165 00, Czech Republic; Centre of Polymer Systems, Tomas Bata University in Zlín, T. Bati 5678, Zlín, 760 01, Czech Republic
utb.fulltext.projects 21-45431L
utb.fulltext.projects RVO67985831
utb.fulltext.faculty Faculty of Technology
utb.fulltext.faculty University Institute
utb.fulltext.ou Department of Physics and Engineering
utb.fulltext.ou Centre of Polymer Systems
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam