Publikace UTB
Repozitář publikační činnosti UTB

An effective data reduction model for machine emergency state detection from big data tree topology structures

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title An effective data reduction model for machine emergency state detection from big data tree topology structures en
dc.contributor.author Iaremko, Iaroslav
dc.contributor.author Šenkeřík, Roman
dc.contributor.author Jašek, Roman
dc.contributor.author Lukaštík, Petr
dc.relation.ispartof International Journal of Applied Mathematics and Computer Science
dc.identifier.issn 1641-876X Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2021
utb.relation.volume 31
utb.relation.issue 4
dc.citation.spage 601
dc.citation.epage 611
dc.type article
dc.language.iso en
dc.publisher Sciendo
dc.identifier.doi 10.34768/amcs-2021-0041
dc.relation.uri https://sciendo.com/article/10.34768/amcs-2021-0041
dc.subject OPC UA en
dc.subject OPC tree en
dc.subject PCA en
dc.subject big data analysis en
dc.subject data reduction en
dc.subject machine tool en
dc.subject anomaly detection en
dc.subject emergency states en
dc.description.abstract This work presents an original model for detecting machine tool anomalies and emergency states through operation data processing. The paper is focused on an elastic hierarchical system for effective data reduction and classification, which encompasses several modules. Firstly, principal component analysis (PCA) is used to perform data reduction of many input signals from big data tree topology structures into two signals representing all of them. Then the technique for segmentation of operating machine data based on dynamic time distortion and hierarchical clustering is used to calculate signal accident characteristics using classifiers such as the maximum level change, a signal trend, the variance of residuals, and others. Data segmentation and analysis techniques enable effective and robust detection of operating machine tool anomalies and emergency states due to almost real-time data collection from strategically placed sensors and results collected from previous production cycles. The emergency state detection model described in this paper could be beneficial for improving the production process, increasing production efficiency by detecting and minimizing machine tool error conditions, as well as improving product quality and overall equipment productivity. The proposed model was tested on H-630 and H-50 machine tools in a real production environment of the Tajmac-ZPS company. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1010792
utb.identifier.obdid 43883339
utb.identifier.scopus 2-s2.0-85123790266
utb.identifier.wok 000740632100005
utb.source J-wok
dc.date.accessioned 2022-01-17T12:56:17Z
dc.date.available 2022-01-17T12:56:17Z
dc.description.sponsorship Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2021/001]
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.access openAccess
utb.ou Department of Informatics and Artificial Intelligence
utb.contributor.internalauthor Iaremko, Iaroslav
utb.contributor.internalauthor Šenkeřík, Roman
utb.contributor.internalauthor Jašek, Roman
utb.fulltext.affiliation JAROSLAV JAREMKO a, ROMAN SENKERIK a,∗, ROMAN JASEK a, PETR LUKASTIK b Department of Informatics and Artificial Intelligence Tomas Bata University in Zlín nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic e-mail: [email protected] Tajmac-ZPS třída 3. května 1180, 763 02 Zlín, Malenovice, Czech Republic e-mail: [email protected]
utb.fulltext.dates Received: 11 June 2021 Revised: 19 August 2021 Re-revised: 14 October 2021 Accepted: 19 October 2021
utb.fulltext.sponsorship This work was supported by the Internal Grant Agency of Tomas Bata University under the project no. IGA/CebiaTech/2021/001, and further by the resources of the A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin.
utb.wos.affiliation [Iaremko, Iaroslav; Senkerik, Roman; Jasek, Roman] Tomas Bata Univ Zlin, Dept Informat & Artificial Intelligence, Nam TG Masaryka 5555, Zlin 76001, Czech Republic; [Lukastik, Petr] Tajmac ZPS, Trida 3 Kvetna 1180, Zlin 76302, Malenovice, Czech Republic
utb.scopus.affiliation Department of Informatics and Artificial Intelligence, Tomas Bata University in Zlín, nám. T.G. Masaryka 5555, Zlín, 760 01, Czech Republic; Tajmac-ZPS, třída 3. května 1180, Malenovice, Zlín, 763 02, Czech Republic
utb.fulltext.projects IGA/CebiaTech/2021/001
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.ou Department of Informatics and Artificial Intelligence
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial-NoDerivatives 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial-NoDerivatives 4.0 International