Kontaktujte nás | Jazyk: čeština English
dc.title | On the infinite-dimensional model multiple-parameter estimation using feedback-relay identification test | en |
dc.contributor.author | Pekař, Libor | |
dc.contributor.author | Zezulka, František | |
dc.contributor.author | Dostálek, Petr | |
dc.relation.ispartof | Lecture Notes in Networks and Systems | |
dc.identifier.issn | 2367-3370 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 978-3-03-090320-6 | |
dc.date.issued | 2021 | |
utb.relation.volume | 231 LNNS | |
dc.citation.spage | 452 | |
dc.citation.epage | 464 | |
dc.event.title | 5th Computational Methods in Systems and Software, CoMeSySo 2021 | |
dc.event.location | online | |
dc.event.sdate | 2021-10-01 | |
dc.event.edate | 2021-10-01 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.identifier.doi | 10.1007/978-3-030-90321-3_37 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007%2F978-3-030-90321-3_37 | |
dc.subject | infinite-dimensional model | en |
dc.subject | initial estimation | en |
dc.subject | Levenberg-Marquardt algorithm | en |
dc.subject | pole assignment | en |
dc.subject | relay-based identification | en |
dc.description.abstract | The objective of this contribution is twofold. First, it demonstrates a case study on applying the standard single-run relay-feedback parameter identification test to a representative of infinite-dimensional systems. Namely, a delayed mathematical model of a circuit heating laboratory appliance process is used. Second, an initial estimation of the model parameters is done via the parameter identification of another – simpler – model. The transition between these two models adopts the idea of dominant spectrum assignment that is solved by using the well-established Levenberg-Marquardt algorithm. Finally, the remaining model parameters are estimated by solving another nonlinear optimization problem in the frequency domains. As transfer function denominator parameters are set independently to the numerator ones, the proposed technique significantly reduces the number of additional relay experiments. Numerical results indicate that the method needs improvements regarding time-response as well as frequency-response accuracy. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1010727 | |
utb.identifier.obdid | 43883143 | |
utb.identifier.scopus | 2-s2.0-85120685397 | |
utb.source | d-scopus | |
dc.date.accessioned | 2021-12-22T11:51:36Z | |
dc.date.available | 2021-12-22T11:51:36Z | |
dc.description.sponsorship | 1170/10/2137 | |
utb.contributor.internalauthor | Pekař, Libor | |
utb.contributor.internalauthor | Dostálek, Petr | |
utb.fulltext.affiliation | Libor Pekař 1,2[0000-0002-2401-5886], František Zezulka1[0000-0002-4057-6018], and Petr Dostálek2 1 College of Polytechnics Jihlava, Tolstého 1556, 586 01 Jihlava, Czech Republic 2 Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 76001 Zlín, Czech Republic [email protected] | |
utb.fulltext.dates | - | |
utb.fulltext.references | 1. Åström, K.J., Hägglund, T.: Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica 20(5), 645–651 (1984). 2. Dharmalingam, K., Thangavelu, T.: Parameter estimation using relay feedback. Rev. Chem. Eng. 35(4), 505-529 (2019). 3. Liu, T., Wang, Q.-G, Huang, H.P.: A tutorial review on process identification from step or relay feedback test. J. Process Control 23(10), 1597–1623 (2013). 4. Wang, Q.-G., Hang, C.C., Zou, B.: Low-order modeling from relay feedback. Ind. Eng. Chem. Res. 36(2), 375–381 (1997). 5. Ma, M.D., Zhu, X.J.: A simple auto-tuner in frequency domain. Comput. Chem. Eng. 30(4), 581–586 (2006). 6. Jeon, C.H., Cheon, Y.J., Kim, J.S., Lee, J., Sung, S.W.: Relay feedback methods combining sub-relays to reduce harmonics. J. Process. Control 20(2), 228–234 (2010). 7. Yu, C.C.: Autotuning of PID Controllers: A Relay Feedback Approach. 2nd ed., Springer, London (2006). 8. Hofreiter, M.,: Relay feedback identification with additional integrator. IFACPapersOnLine 52(13), 66-71 (2019). 9. Bi, Q., Wang, Q.-G., Hang, C.C.: Relay-based estimation of multiple points on process frequency response. Automatica 33(9), 1753–1757 (1997). 10. Hale, J.K., Lunel, S.V.: Introduction to Functional Differential Equations. Springer, New York (1993). 11. Vyhlídal, T., Zítek, P.: Control system design based on a universal first order model with time delays. Acta Polytech. 41(4-5), 49-53 (2001). 12. Pekař, L., Prokop, R.: Saturation relay vs. relay transient identification tests for a TDS model. In: Proc. 27th Eur. Conf. Model. Simul. (ECMS 2013), pp. 446-452, Alesund, Norway (2013). 13. Pekař, L.: Modeling and identification of a time-delay heat exchanger plant. In: Pekař, L. (ed.) Advanced Analytic and Control Techniques for Thermal Systems with Heat Exchangers, pp. 23-48. Academic Press (Elsevier), Cambridge, MA, USA (2020). 14. Hofreiter, M.: Fitting anisochronic models by method of moments for anisochronic control of time delay systems. Int. J. Math. Mod. Meth Appl. Sci. 10, 71-79 (2016). 15. Úředníček, Z.: Nonlinear systems-describing functions analysis and using. MATEC Web Conf. 210, 02021 (2018). 16. Ramana, K.V., Majhi, S., Gogoi, A.K.: Identification of DC–DC buck converter dynamics using relay feedback method with experimental validation. IET Circ. Devices Syst. 12(6), 777-784 (2018). 17. Pekař, L.: Root locus analysis of a retarded quasipolynomial. WSEAS Trans. Syst. Control 6(3), 79-91 (2011). 18. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11(2), 431–441 (1963). | |
utb.fulltext.sponsorship | This research was supported by the College of Polytechnics Jihlava, under Grant no. 1170/10/2137. | |
utb.scopus.affiliation | College of Polytechnics Jihlava, Tolstého 1556, Jihlava, 586 01, Czech Republic; Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, Zlín, 76001, Czech Republic | |
utb.fulltext.projects | 1170/10/2137 | |
utb.fulltext.faculty | - | |
utb.fulltext.ou | - |