Kontaktujte nás | Jazyk: čeština English
dc.title | Dual Li-ion migration channels in an ester-rich copolymer/ionic liquid quasi-solid-state electrolyte for high-performance Li-S batteries | en |
dc.contributor.author | Cai, Xiaomin | |
dc.contributor.author | Ye, Bei | |
dc.contributor.author | Ding, Jianlong | |
dc.contributor.author | Chi, Ziyun | |
dc.contributor.author | Sun, Liping | |
dc.contributor.author | Sáha, Petr | |
dc.contributor.author | Wang, Gengchao | |
dc.relation.ispartof | Journal of Materials Chemistry A | |
dc.identifier.issn | 2050-7488 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2021 | |
utb.relation.volume | 9 | |
utb.relation.issue | 4 | |
dc.citation.spage | 2459 | |
dc.citation.epage | 2469 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Royal Society of Chemistry | |
dc.identifier.doi | 10.1039/d0ta11180e | |
dc.relation.uri | https://pubs.rsc.org/en/content/articlelanding/2021/TA/D0TA11180E#!divAbstract | |
dc.description.abstract | Solid-state polymer electrolytes are expected to fundamentally solve the instability and safety problems of liquid electrolytes for lithium-sulfur batteries. Herein, ionic liquids were introduced on the basis of constructing ester-rich copolymers, and dual Li-ion migration channels were built in an ester-rich copolymer/ionic liquid quasi-solid-state electrolyte (SPE-IL). “Association-disassociation” with the carbonyl groups and rapid ion exchange with the ionic liquids are the two migration modes that synergistically increase the room temperature ionic conductivity of the SPE-IL. In addition, the abundant ester groups provide strong chemisorption on lithium polysulfides and successfully inhibit the sulfur shuttle. More importantly, ionic liquids realize the “soft contact” between the electrode and the electrolyte, which is conducive to the construction of stable interfaces. Together with the GPa-level high modulus brought by vinyl carbonate, the formation of lithium dendrites is inhibited. As a result, the assembled lithium-sulfur battery displayed a high initial discharge capacity of 1106 mA h g−1, good cycling stability (80.2% capacity retention after 300 cycles at 0.1 C) and superior rate performance. © The Royal Society of Chemistry 2021. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1010220 | |
utb.identifier.obdid | 43882471 | |
utb.identifier.scopus | 2-s2.0-85100381436 | |
utb.identifier.wok | 000614172600048 | |
utb.identifier.coden | JMCAE | |
utb.source | j-scopus | |
dc.date.accessioned | 2021-02-26T14:17:21Z | |
dc.date.available | 2021-02-26T14:17:21Z | |
dc.description.sponsorship | National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [21875065, 51673064]; National Key R&D Program of China [2016YFE0131200] | |
dc.description.sponsorship | National Natural Science Foundation of China, NSFC: 21875065, 51673064; National Key Research and Development Program of China, NKRDPC: 2016YFE0131200 | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Sáha, Petr | |
utb.fulltext.affiliation | Xiaomin Cai a, Bei Ye a, Jianlong Ding a, Ziyun Chi a, Liping Sun a, Petr Sahab, Gengchao Wang *a a Shanghai Key Laboratory of Advanced Polymeric Materials, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, P.O. Box 289, 130 Meilong Rd., Shanghai 200237, P. R.China. E-mail: [email protected]; Tel: +86-21-64253527 b Centre of Polymer Systems, University Institute, Tomas Bata University, Tř. T. Bati 5678, Zlin-76001, Zlín, Czech Republic † Electronic supplementary information (ESI) available. See DOI: 10.1039/d0ta11180e | |
utb.fulltext.dates | Received 16th November 2020 Accepted 20th December 2020 | |
utb.fulltext.sponsorship | We greatly appreciate the financial support of National Natural Science Foundation of China (21875065, 51673064) and National Key R&D Program of China (2016YFE0131200). | |
utb.wos.affiliation | [Cai, Xiaomin; Ye, Bei; Ding, Jianlong; Chi, Ziyun; Sun, Liping; Wang, Gengchao] East China Univ Sci & Technol, Shanghai Key Lab Adv Polymer Mat, Shanghai Engn Res Ctr Hierarch Nanomat, Sch Mat Sci & Engn, POB 289,130 Meilong Rd, Shanghai 200237, Peoples R China; [Saha, Petr] Tomas Bata Univ, Univ Inst, Ctr Polymer Syst, Tr T Bati 5678, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Shanghai Key Laboratory of Advanced Polymeric Materials, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, P.O. Box 289, 130 Meilong Rd., Shanghai, 200237, China; Centre of Polymer Systems, University Institute, Tomas Bata University, Tř. T. Bati 5678, Zlin, Zlín 76001, Czech Republic | |
utb.fulltext.projects | 21875065 | |
utb.fulltext.projects | 51673064 | |
utb.fulltext.projects | 2016YFE0131200 | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.ou | Centre of Polymer Systems |