Publikace UTB
Repozitář publikační činnosti UTB

Slippery liquid-infused porous polymeric surfaces based on natural oil with antimicrobial effect

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Slippery liquid-infused porous polymeric surfaces based on natural oil with antimicrobial effect en
dc.contributor.author Habib, Salma
dc.contributor.author Zavahir, Sifani
dc.contributor.author Abusrafa, Aya E.
dc.contributor.author Abdulkareem, Asma
dc.contributor.author Sobolčiak, Patrik
dc.contributor.author Lehocký, Marián
dc.contributor.author Veselá, Daniela
dc.contributor.author Humpolíček, Petr
dc.contributor.author Popelka, Anton
dc.relation.ispartof Polymers
dc.identifier.issn 2073-4360 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2021
utb.relation.volume 13
utb.relation.issue 2
dc.citation.spage 1
dc.citation.epage 18
dc.type article
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/polym13020206
dc.relation.uri https://www.mdpi.com/2073-4360/13/2/206
dc.subject slippery surface en
dc.subject electrospinning en
dc.subject oil infusion en
dc.subject plasma treatment en
dc.subject antimicrobial activity en
dc.description.abstract Many polymer materials have found a wide variety of applications in biomedical indus-tries due to their excellent mechanical properties. However, the infections associated with the bio-film formation represent serious problems resulting from the initial bacterial attachment on the polymeric surface. The development of novel slippery liquid-infused porous surfaces (SLIPSs) repre-sents promising method for the biofilm formation prevention. These surfaces are characterized by specific microstructural roughness able to hold lubricants inside. The lubricants create a slippery layer for the repellence of various liquids, such as water and blood. In this study, effective antimi-crobial modifications of polyethylene (PE) and polyurethane (PU), as commonly used medical pol-ymers, were investigated. For this purpose, low-temperature plasma treatment was used initially for activation of the polymeric surface, thereby enhancing surface and adhesion properties. Subse-quently, preparation of porous microstructures was achieved by electrospinning technique using polydimethylsiloxane (PDMS) in combination with polyamide (PA). Finally, natural black seed oil (BSO) infiltrated the produced fiber mats acting as a lubricating layer. The optimized fiber mats’ production was achieved using PDMS/PA mixture at ratio 1:1:20 (g/g/mL) using isopropyl alcohol as solvent. The surface properties of produced slippery surfaces were analyzed by various microscopic and optics techniques to obtain information about wettability, sliding behavior and surface morphology/topography. The modified PE and PU substrates demonstrated slippery behavior of an impinged water droplet at a small tilting angle. Moreover, the antimicrobial effects of the produced SLIPs using black seed oil were proven against Gram-positive Staphylococcus aureus (S. au-reus) and Gram-negative Escherichia coli (E. coli). © 2021 by the authors. Licensee MDPI, Basel, Switzerland. en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1010174
utb.identifier.obdid 43882447
utb.identifier.scopus 2-s2.0-85099150522
utb.identifier.wok 000611469300001
utb.source j-scopus
dc.date.accessioned 2021-01-20T12:25:25Z
dc.date.available 2021-01-20T12:25:25Z
dc.description.sponsorship Qatar National Research Fund ( Qatar Foundation) [JSREP07-022-3-010]; Qatar University [QUCG-CAM-20/21-3]; Ministry of Education, Youth and Sports of the Czech Republic DKRVO [RP/CPS/2020/001]
dc.description.sponsorship Qatar National Research Fund, QNRF; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: RP/CPS/2020/001; Qatar University, QU: QUCG-CAM-20/21-3
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Lehocký, Marián
utb.contributor.internalauthor Veselá, Daniela
utb.contributor.internalauthor Humpolíček, Petr
utb.fulltext.affiliation Salma Habib 1 , Sifani Zavahir 1, Aya E. Abusrafa 1, Asma Abdulkareem 1, Patrik Sobolčiak 1, Marian Lehocky 2,3 , Daniela Vesela 2, Petr Humpolíček 2,3 and Anton Popelka 1,* 1 Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; [email protected] (S.H.); [email protected] (S.Z.); [email protected] (A.E.A.); [email protected] (A.A.); [email protected] (P.S.) 2 Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; [email protected] (M.L.); [email protected] (D.V.); [email protected] (P.H.) 3 Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic * Correspondence: [email protected]; Tel.: +974-4403-5676
utb.fulltext.dates Received: 9 November 2020 Accepted: 5 January 2021 Published: 8 January 2021
utb.fulltext.references 1. James, N.R.; Jayakrishnan, A. Surface thiocyanation of plasticized poly (vinyl chloride) and its effect on bacterial adhesion. Biomaterials 2003, 24, 2205–2212. [CrossRef] 2. Lakshmi, S.; Pradeep Kumar, S.S.; Jayakrishnan, A. Bacterial adhesion onto azidated poly (vinyl chloride) surfaces. J. Biomed. Mater. Res. 2002, 61, 26–32. [CrossRef] 3. Gomathi, N.; Sureshkumar, A.; Neogi, S. RF plasma-treated polymers for biomedical applications. Curr. Sci. 2008, 94, 1478–1486. 4. Kenawy, E.R.;Worley, S.D.; Broughton, R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules 2007, 8, 1359–1384. 5. O’Toole, G.; Kaplan, H.B.; Kolter, R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 2000, 54, 49–79. 6. Chen, X.; Stewart, P.S. Biofilm removal caused by chemical treatments. Water Res. 2000, 34, 4229–4233. [CrossRef] 7. Romero, R.; Schaudinn, C.; Kusanovic, J.P.; Gorur, A.; Gotsch, F.;Webster, P.; Nhan-Chang, C.L.; Erez, O.; Kim, C.J.; Espinoza, J.; et al. Detection of a microbial biofilm in intraamniotic infection. Am. J. Obstet. Gynecol. 2008, 198, 135.e1–135.e5. [CrossRef] 8. Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. 9. Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003, 2, 114–122. 10. Götz, F. Staphylococcus and biofilms. Mol. Microbiol. 2002, 43, 1367–1378. 11. Fernández, L.; Gooderham, W.J.; Bains, M.; McPhee, J.B.; Wiegand, I.; Hancock, R.E.W. Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS. Antimicrob. Agents Chemother. 2010, 54, 3372–3382. [CrossRef] 12. Strateva, T.; Yordanov, D. Pseudomonas aeruginosa—A phenomenon of bacterial resistance. J. Med. Microbiol. 2009, 58, 1133–1148. 13. Poole, K. Pseudomonas aeruginosa: Resistance to the max. Front. Microbiol. 2011, 2. [CrossRef] 14. Nicolle, L.E. Urinary Catheter-Associated Infections. Infect. Dis. Clin. North Am. 2012, 26, 13–27. 15. Sedlarik, V. Antimicrobial Modifications of Polymers. In Biodegradation—Life of Science; IntechOpen: London, UK, 2013. 16. Shintani, H. Modification of Medical Device Surface to Attain Anti-Infection. Trends Biomater. Artif. Organs 2004, 18, 1–8. 17. Nowatzki, P.J.; Koepsel, R.R.; Stoodley, P.; Min, K.; Harper, A.; Murata, H.; Donfack, J.; Hortelano, E.R.; Ehrlich, G.D.; Russell, A.J. Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings. Acta Biomater. 2012, 8, 1869–1880. [CrossRef] 18. Adamczyk, Z.; Szyk-Warszyńska, L.; Zembala, M.; Lehocký, M. In situ studies of particle deposition on non-transparent substrates. Colloid Surf. A-Physicochem. Eng. Asp. 2004, 235, 65–72. [CrossRef] 19. Vrlinič, T.; Vesel, A.; Cvelbar, U.; Krajnc, M.; Mozetič, M. Rapid surface functionalization of poly (ethersulphone) foils using a highly reactive oxygen-plasma treatment. Surf. Interface Anal. 2007, 39, 476–481. [CrossRef] 20. Vesel, A.; Junkar, I.; Cvelbar, U.; Kovac, J.; Mozetic, M. Surface modification of polyester by oxygen and nitrogen-plasma treatment. Surf. Interface Anal. 2008, 40, 1444–1453. [CrossRef] 21. Vesel, A.; Zaplotnik, R.; Primc, G.; Liu, X.; Xu, K.; Chen, K.C.; Wei, C.; Mozetic, M. Functionalization of Polyurethane/Urea Copolymers with Amide Groups by Polymer Treatment with Ammonia Plasma. Plasma Chem. Plasma Process. 2016, 36, 835–848. [CrossRef] 22. Atiyeh, B.S.; Costagliola, M.; Hayek, S.N.; Dibo, S.A. Effect of silver on burn wound infection control and healing: Review of the literature. Burns 2007, 33, 139–148. 23. Fundeanu, I.; Klee, D.; Schouten, A.J.; Busscher, H.J.; van der Mei, H.C. Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion. Acta Biomater. 2010, 6, 4271–4276. [CrossRef] 24. Cheng, G.; Xue, H.; Zhang, Z.; Chen, S.; Jiang, S. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew. Chem. Int. Ed. 2008, 47, 8831–8834. [CrossRef] 25. Bridges, A.W.; García, A.J. Anti-Inflammatory Polymeric Coatings for Implantable Biomaterials and Devices. In Journal of Diabetes Science and Technology; SAGE Publications Inc.: New York, NY, USA, 2008; Volume 2, pp. 984–994. 26. Roosjen, A.; van der Mei, H.C.; Busscher, H.J.; Norde, W. Microbial adhesion to poly (ethylene oxide) brushes: Influence of polymer chain length and temperature. Langmuir 2004, 20, 10949–10955. [CrossRef] 27. Cunliffe, D.; Smart, C.A.; Alexander, C.; Vulfson, E.N. Bacterial adhesion at synthetic surfaces. Appl. Environ. Microbiol. 1999, 65, 4995–5002. [CrossRef] 28. Bruinsma, G.M.; van der Mei, H.C.; Busscher, H.J. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials 2001, 22, 3217–3224. [CrossRef] 29. Boks, N.P.; Norde,W.; van der Mei, H.C.; Busscher, H.J. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiology 2008, 154, 3122–3133. [CrossRef] 30. Donlan, R.M. Biofilms and Device-Associated Infections. In Emerging Infectious Diseases; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2001; Volume 7, pp. 277–281. 31. Friedlander, R.S.; Vlamakis, H.; Kim, P.; Khan, M.; Kolter, R.; Aizenberg, J. Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proc. Natl. Acad. Sci. USA 2013, 110, 5624–5629. [CrossRef] 32. Xiao, L.; Li, J.; Mieszkin, S.; Di Fino, A.; Clare, A.S.; Callow, M.E.; Callow, J.A.; Grunze, M.; Rosenhahn, A.; Levkin, P.A. Slippery liquid-infused porous surfaces showing marine antibiofouling properties. ACS Appl. Mater. Interfaces 2013, 5, 10074–10080. [CrossRef] 33. Wong, T.-S.; Kang, S.H.; Tang, S.K.Y.; Smythe, E.J.; Hatton, B.D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443. 34. Zhuo, Y.; Wang, F.; Xiao, S.; He, J.; Zhang, Z. One-Step Fabrication of Bioinspired Lubricant-Regenerable Icephobic Slippery Liquid-Infused Porous Surfaces. ACS Omega 2018, 3, 10139–10144. [CrossRef] 35. Geraldi, N.R.; Guan, J.H.; Dodd, L.E.; Maiello, P.; Xu, B.B.;Wood, D.; Newton, M.I.;Wells, G.G.; McHale, G. Double-sided slippery liquid-infused porous materials using conformable mesh. Sci. Rep. 2019, 9. [CrossRef] 36. Zhu, G.H.; Cho, S.H.; Zhang, H.; Zhao, M.; Zacharia, N.S. Slippery Liquid-Infused Porous Surfaces (SLIPS) Using Layer-by-Layer Polyelectrolyte Assembly in Organic Solvent. Langmuir 2018, 34, 4722–4731. [CrossRef] 37. Long, Y.; Yin, X.; Mu, P.;Wang, Q.; Hu, J.; Li, J. Slippery liquid-infused porous surface (SLIPS) with superior liquid repellency, anti-corrosion, anti-icing and intensified durability for protecting substrates. Chem. Eng. J. 2020, 401, 126137. [CrossRef] 38. Christenson, E.M.; Dadsetan, M.; Anderson, J.M.; Hiltner, A. Biostability and macrophage-mediated foreign body reaction of silicone-modified polyurethanes. J. Biomed. Mater. Res. 2005, 74, 141–155. [CrossRef] 39. Khan, I.; Smith, N.; Jones, E.; Finch, D.S.; Cameron, R.E. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: Materials selection and evaluation. Biomaterials 2005, 26, 621–631. [CrossRef] 40. Pinchuk, L.; Martin, J.B.; Esquivel, M.C.; Macgregor, D.C. The Use of Silicone/Polyurethane Graft Polymers as a Means of Eliminating Surface Cracking of Polyurethane Prostheses. J. Biomater. Appl. 1988, 3, 260–296. [CrossRef] 41. Martin, D.J.; Poole Warren, L.A.; Gunatillake, P.A.; McCarthy, S.J.; Meijs, G.F.; Schindhelm, K. Polydimethylsiloxane/polyethermixed macrodiol-based polyurethane elastomers: Biostability. Biomaterials 2000, 21, 1021–1029. [CrossRef] 42. Pant, H.R.; Bajgai, M.P.; Nam, K.T.; Seo, Y.A.; Pandeya, D.R.; Hong, S.T.; Kim, H.Y. Electrospun nylon-6 spider-net like nanofiber mat containing TiO2nanoparticles: A multifunctional nanocomposite textile material. J. Hazard. Mater. 2011, 185, 124–130. [CrossRef] 43. Pant, B.; Pant, H.R.; Pandeya, D.R.; Panthi, G.; Nam, K.T.; Hong, S.T.; Kim, C.S.; Kim, H.Y. Characterization and antibacterial properties of Ag NPs loaded nylon-6 nanocomposite prepared by one-step electrospinning process. Coll. Surf. Physicochem. Eng. Asp. 2012, 395, 94–99. [CrossRef] 44. Heikkilä, P.; Harlin, A. Parameter study of electrospinning of polyamide-6. Eur. Polym. J. 2008, 44, 3067–3079. [CrossRef] 45. Matulevicius, J.; Kliucininkas, L.; Martuzevicius, D.; Krugly, E.; Tichonovas, M.; Baltrusaitis, J. Design and characterization of electrospun polyamide nanofiber media for air filtration applications. J. Nanomater. 2014, 2014. [CrossRef] 46. Shourgashti, Z.; Khorasani, M.T.; Khosroshahi, S.M.E. Plasma-induced grafting of polydimethylsiloxane onto polyurethane surface: Characterization and in vitro assay. Radiat. Phys. Chem. 2010, 79, 947–952. [CrossRef] 47. Park, K.-C.; Kim, P.; Grinthal, A.; He, N.; Fox, D.; Weaver, J.C.; Aizenberg, J. Condensation on slippery asymmetric bumps. Nature 2016, 531, 78. 48. Zhang, X.; Zhi, D.; Sun, L.; Zhao, Y.; Tiwari, M.K.; Carmalt, C.J.; Parkin, I.P.; Lu, Y. Super-durable, non-fluorinated superhydrophobic free-standing items. J. Mater. Chem. A 2018, 6, 357–362. [CrossRef] 49. Jia, S.; Chen, H.; Luo, S.; Qing, Y.; Deng, S.; Yan, N.; Wu, Y. One-step approach to prepare superhydrophobic wood with enhanced mechanical and chemical durability: Driving of alkali. Appl. Surf. Sci. 2018, 455, 115–122. [CrossRef] 50. Chen, H.; Zhang, P.; Zhang, L.; Liu, H.; Jiang, Y.; Zhang, D.; Han, Z.; Jiang, L. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 2016, 532, 85. 51. Kuliasha, C.A.; Finlay, J.A.; Franco, S.C.; Clare, A.S.; Stafslien, S.J.; Brennan, A.B. Marine anti-biofouling efficacy of amphiphilic poly(coacrylate) grafted PDMSe: Effect of graft molecular weight. Biofouling 2017, 33, 252–267. [CrossRef] 52. Tribou, M.; Swain, G. The use of proactive in-water grooming to improve the performance of ship hull antifouling coatings. Biofouling 2010, 26, 47–56. [CrossRef] 53. Shivapooja, P.; Yu, Q.; Orihuela, B.; Mays, R.; Rittschof, D.; Genzer, J.; López, G.P. Modification of Silicone Elastomer Surfaces with Zwitterionic Polymers: Short-Term Fouling Resistance and Triggered Biofouling Release. ACS Appl. Mater. Interfaces 2015, 7, 25586–25591. [CrossRef] 54. Dinagaran, S.; Sridhar, S.; Eganathan, P. Chemical composition and antioxidant activities of black seed oil (Nigella Sativa L.). Int. J. Pharm. Sci. Res. 2016, 7, 4473. [CrossRef] 55. Mohammed, S.J.; Amin, H.H.H.; Aziz, S.B.; Sha, A.M.; Hassan, S.; Abdul Aziz, J.M.; Rahman, H.S. Structural Characterization, Antimicrobial Activity, and in Vitro Cytotoxicity Effect of Black Seed Oil. Evid. Based Complement. Altern. Med. 2019, 2019. [CrossRef] 56. Nair, M.K.M.; Vasudevan, P.; Venkitanarayanan, K. Antibacterial effect of black seed oil on Listeria monocytogenes. Food Control 2005, 16, 395–398. [CrossRef] 57. Abusrafa, A.E.; Habib, S.; Krupa, I.; Ouederni, M.; Popelka, A. Modification of polyethylene by RF plasma in different/mixture gases. Coatings 2019, 9, 145. [CrossRef] 58. Abusrafa, A.E.; Habib, S.; Popelka, A. Surface Functionalization of a Polyurethane Surface via Radio-Frequency Cold Plasma Treatment Using Different Gases. Coatings 2020, 10, 1067. [CrossRef] 59. Oliver,W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [CrossRef] 60. Yang, D.; Liu, X.; Jin, Y.; Zhu, Y.; Zeng, D.; Jiang, X.; Ma, H. Electrospinning of poly(dimethylsiloxane)/poly (methyl methacrylate) nanofibrous membrane: Fabrication and application in protein microarrays. Biomacromolecules 2009, 10, 3335–3340. [CrossRef] 61. Dasgupta, S.; Hammond, W.B.; Goddard, W.A. Crystal structures and properties of nylon polymers from theory. J. Am. Chem. Soc. 1996, 118, 12291–12301. [CrossRef] 62. Chen, S.; Han, D.; Hou, H. High strength electrospun fibers. Polym. Adv. Technol. 2011, 22, 295–303. 63. Carrizales, C.; Pelfrey, S.; Rincon, R.; Eubanks, T.M.; Kuang, A.; McClure, M.J.; Bowlin, G.L.; Macossay, J. Thermal and mechanical properties of electrospun PMMA, PVC, Nylon 6, and Nylon 6,6. Polym. Adv. Technol. 2008, 19, 124–130. [CrossRef] 64. Bazbouz, M.B.; Stylios, G.K. The tensile properties of electrospun nylon 6 single nanofibers. J. Polym. Sci. 2010, 48, 1719–1731. [CrossRef] 65. Zussman, E.; Burman, M.; Yarin, A.L.; Khalfin, R.; Cohen, Y. Tensile deformation of electrospun nylon-6,6 nanofibers. J. Polym. Sci. 2006, 44, 1482–1489. [CrossRef] 66. Zarshenas, K.; Raisi, A.; Aroujalian, A. Surface modification of polyamide composite membranes by corona air plasma for gas separation applications. RSC Adv. 2015, 5, 19760–19772. [CrossRef] 67. Law, B.M.; McBride, S.P.;Wang, J.Y.;Wi, H.S.; Paneru, G.; Betelu, S.; Ushijima, B.; Takata, Y.; Flanders, B.; Bresme, F.; et al. Line tension and its influence on droplets and particles at surfaces. Prog. Surf. Sci. 2017, 92, 1–39. 68. Samaha, M.A.; Gad-el-Hak, M. Polymeric slippery coatings: Nature and applications. Polymers 2014, 6, 1266–1311.
utb.fulltext.sponsorship This publication was made possible by Award JSREP07-022-3-010 from the Qatar National Research Fund (a member of The Qatar Foundation). This publication was supported by the Qatar University Collaborative grant number QUCG-CAM-20/21-3. The statements made herein are solely the responsibility of the authors. P.H., M.L. and D.V. acknowledge that this work was supported by the Ministry of Education, Youth and Sports of the Czech Republic DKRVO (RP/CPS/2020/001). XPS analysis was accomplished in part in the Gas Processing Center, College of Engineering, Qatar University. SEM analysis was accomplished in the Central Laboratories unit, Qatar University.
utb.wos.affiliation [Habib, Salma; Zavahir, Sifani; Abusrafa, Aya E.; Abdulkareem, Asma; Sobolciak, Patrik; Popelka, Anton] Qatar Univ, Ctr Adv Mat, POB 2713, Doha, Qatar; [Lehocky, Marian; Vesela, Daniela; Humpolicek, Petr] Tomas Bata Univ Zlin, Ctr Polymer Syst, Trida Tomase Bati 5678, Zlin 76001, Czech Republic; [Lehocky, Marian; Humpolicek, Petr] Tomas Bata Univ Zlin, Fac Technol, Vavreckova 275, Zlin 76001, Czech Republic
utb.scopus.affiliation Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar; Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, Zlin, 760 01, Czech Republic; Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, Zlin, 760 01, Czech Republic
utb.fulltext.projects JSREP07-022-3-010
utb.fulltext.projects QUCG-CAM-20/21-3
utb.fulltext.projects RP/CPS/2020/001
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International