Kontaktujte nás | Jazyk: čeština English
dc.title | Supervised classification methods for fake news identification | en |
dc.contributor.author | Truong, Thanh Cong | |
dc.contributor.author | Diep, Quoc Bao | |
dc.contributor.author | Zelinka, Ivan | |
dc.contributor.author | Šenkeřík, Roman | |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.identifier.issn | 0302-9743 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 978-3-03-061533-8 | |
dc.date.issued | 2020 | |
utb.relation.volume | 12416 LNAI | |
dc.citation.spage | 445 | |
dc.citation.epage | 454 | |
dc.event.title | 19th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2020 | |
dc.event.location | Zakopane | |
utb.event.state-en | Poland | |
utb.event.state-cs | Polsko | |
dc.event.sdate | 2020-10-12 | |
dc.event.edate | 2020-10-14 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.identifier.doi | 10.1007/978-3-030-61534-5_40 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-3-030-61534-5_40 | |
dc.subject | deep learning | en |
dc.subject | fake news | en |
dc.subject | machine learning | en |
dc.subject | supervised classification | en |
dc.description.abstract | Along with the rapid increase in the popularity of online media, the proliferation of fake news and its propagation is also rising. Fake news can propagate with an uncontrollable speed without verification and can cause severe damages. Various machine learning and deep learning approaches have been attempted to classify the real and the false news. In this research, the author group presents a comprehensive performance evaluation of eleven supervised algorithms on three datasets for fake news classification. © 2020, Springer Nature Switzerland AG. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1010051 | |
utb.identifier.obdid | 43882340 | |
utb.identifier.scopus | 2-s2.0-85096571526 | |
utb.source | d-scopus | |
dc.date.accessioned | 2020-12-09T01:52:46Z | |
dc.date.available | 2020-12-09T01:52:46Z | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.fulltext.affiliation | Thanh Cong Truong1, Quoc Bao Diep 1, Ivan Zelinka 1, Roman Senkerik 2 1 Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Ostrava, Czech Republic {cong.thanh.truong.st,ivan.zelinka}@vsb.cz, [email protected] 2 Faculty of Applied Informatics, Tomas Bata University in Zlin, T. G. Masaryka 5555, 760 01 Zlin, Czech Republic [email protected] | |
utb.fulltext.dates | - | |
utb.fulltext.sponsorship | The following grants are acknowledged for the financial support provided for this research: Grant of SGS No. SP2020/78, VSB Technical University of Ostrava. | |
utb.scopus.affiliation | Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, Ostrava, 708 00, Czech Republic; Faculty of Applied Informatics, Tomas Bata University in Zlin, T. G. Masaryka 5555, Zlin, 760 01, Czech Republic | |
utb.fulltext.projects | SP2020/78 | |
utb.fulltext.faculty | Faculty of Applied Informatics |