Publikace UTB
Repozitář publikační činnosti UTB

Improving CT image tumor segmentation through deep supervision and attentional gates

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Improving CT image tumor segmentation through deep supervision and attentional gates en
dc.contributor.author Turečková, Alžběta
dc.contributor.author Tureček, Tomáš
dc.contributor.author Komínková Oplatková, Zuzana
dc.contributor.author Rodríguez-Sánchez, Antonio
dc.relation.ispartof Frontiers in Robotics and AI
dc.identifier.issn 2296-9144 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2020
utb.relation.volume 7
dc.type article
dc.language.iso en
dc.publisher Frontiers Media S.A.
dc.identifier.doi 10.3389/frobt.2020.00106
dc.relation.uri https://www.frontiersin.org/articles/10.3389/frobt.2020.00106/full
dc.subject medical image segmentation en
dc.subject CNN en
dc.subject UNet en
dc.subject VNet en
dc.subject attention gates en
dc.subject deep supervision en
dc.subject tumor segmentation en
dc.subject organ segmentation en
dc.description.abstract Computer Tomography (CT) is an imaging procedure that combines many X-ray measurements taken from different angles. The segmentation of areas in the CT images provides a valuable aid to physicians and radiologists in order to better provide a patient diagnose. The CT scans of a body torso usually include different neighboring internal body organs. Deep learning has become the state-of-the-art in medical image segmentation. For such techniques, in order to perform a successful segmentation, it is of great importance that the network learns to focus on the organ of interest and surrounding structures and also that the network can detect target regions of different sizes. In this paper, we propose the extension of a popular deep learning methodology, Convolutional Neural Networks (CNN), by including deep supervision and attention gates. Our experimental evaluation shows that the inclusion of attention and deep supervision results in consistent improvement of the tumor prediction accuracy across the different datasets and training sizes while adding minimal computational overhead. © Copyright © 2020 Turečková, Tureček, Komínková Oplatková and Rodríguez-Sánchez. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1009910
utb.identifier.obdid 43881327
utb.identifier.scopus 2-s2.0-85090765676
utb.identifier.wok 000570414900001
utb.source j-scopus
dc.date.accessioned 2020-09-25T13:44:07Z
dc.date.available 2020-09-25T13:44:07Z
dc.description.sponsorship Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2020/001]; COST (European Cooperation in Science Technology) [CA15140]; program Projects of Large Research, Development, and Innovations Infrastructures [e-INFRA LM2018140]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou CEBIA-Tech
utb.contributor.internalauthor Turečková, Alžběta
utb.contributor.internalauthor Tureček, Tomáš
utb.contributor.internalauthor Komínková Oplatková, Zuzana
utb.fulltext.affiliation Alžbeta Turečková 1*, Tomáš Tureček 1, Zuzana Komínková Oplatková 1, Antonio Rodríguez-Sánchez 2 1 Artificial Intelligence Laboratory, Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czechia, 2 Intelligent and Interactive Systems, Department of Computer Science, University of Innsbruck, Innsbruck, Austria * Correspondence: Alžbeta Turečková [email protected]
utb.fulltext.dates Received: 31 July 2019 Accepted: 07 July 2020 Published: 28 August 2020
utb.fulltext.sponsorship This paper was created with support of A.I. Lab (ailab.fai.utb.cz) from Tomas Bata University in Zlin and IIS group at the University of Innsbruck (iis.uibk.ac.at). Funding. This work was supported by Internal Grant Agency of Tomas Bata University under the Project no. IGA/CebiaTech/2020/001, and by COST (European Cooperation in Science & Technology) under Action CA15140, Improving Applicability of Nature-Inspired Optimization by Joining Theory and Practice (ImAppNIO). Finally, the access to computational resources supplied by the project e-Infrastruktura CZ (e-INFRA LM2018140) provided within the program Projects of Large Research, Development, and Innovations Infrastructures, is greatly appreciated.
utb.wos.affiliation [Tureckova, Alzbeta; Turecek, Tomas; Kominkova Oplatkova, Zuzana] Tomas Bata Univ Zlin, Fac Appl Informat, Artificial Intelligence Lab, Zlin, Czech Republic; [Rodriguez-Sanchez, Antonio] Univ Innsbruck, Dept Comp Sci, Intelligent & Interact Syst, Innsbruck, Austria
utb.scopus.affiliation Artificial Intelligence Laboratory, Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic; Intelligent and Interactive Systems, Department of Computer Science, University of Innsbruck, Innsbruck, Austria
utb.fulltext.projects IGA/CebiaTech/2020/001
utb.fulltext.projects CA15140
utb.fulltext.projects ImAppNIO
utb.fulltext.projects e-INFRA LM2018140
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.ou Artificial Intelligence Laboratory
utb.fulltext.ou Artificial Intelligence Laboratory
utb.fulltext.ou Artificial Intelligence Laboratory
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International