Kontaktujte nás | Jazyk: čeština English
dc.title | Joint effects of long-chain branching and specific nucleation on morphology and thermal properties of polypropylene blends | en |
dc.contributor.author | Gajzlerová, Lenka | |
dc.contributor.author | Navrátilová, Jana | |
dc.contributor.author | Ryzí, Adriana | |
dc.contributor.author | Slaběňáková, Tereza | |
dc.contributor.author | Čermák, Roman | |
dc.relation.ispartof | Express Polymer Letters | |
dc.identifier.issn | 1788-618X Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2020 | |
utb.relation.volume | 14 | |
utb.relation.issue | 10 | |
dc.citation.spage | 952 | |
dc.citation.epage | 961 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | BME-PT and GTE | |
dc.identifier.doi | 10.3144/expresspolymlett.2020.77 | |
dc.relation.uri | https://www.expresspolymlett.com/letolt.php?file=EPL-0010572&mi=c | |
dc.subject | polymer blends and alloys | en |
dc.subject | polypropylene | en |
dc.subject | long-chain branching | en |
dc.subject | specific nucleation | en |
dc.subject | thermal properties | en |
dc.description.abstract | The influence of long-chain branching and specific β-nucleation on polymorphic composition, melting and crystallization, and morphology of polypropylene blends were investigated by wide-angle X-ray scattering, differential scanning calorimetry, and scanning electron microscopy. Linear polypropylene and long-chain branched polypropylene were used for the preparation of blends in various proportions. N,N′-dicyclohexylnaphthalene-2,6-dicarboxamide was introduced (0 or 0.03 wt%) as a β-specific nucleating agent into prepared blends. It was found that LCB-PP strongly induces γ-phase formation in the blends and suppresses the nucleation activity of a β-specific nucleating agent. Blends containing a predominant amount of α-and γ-phases showed higher thermodynamic stability within melting, as compared to the samples rich in β-phase. During crystallization, LCB-PP in the blends increases nucleation density by self-seeding effect, manifesting itself in the shift of crystallization temperature. β-phase in the blends is distinctly separated in spherulites, while α-and γ-phases coexist on the lamellae level. © 2020, BME-PT and GTE. All rights reserved. | en |
utb.faculty | Faculty of Technology | |
dc.identifier.uri | http://hdl.handle.net/10563/1009833 | |
utb.identifier.obdid | 43881626 | |
utb.identifier.scopus | 2-s2.0-85088902742 | |
utb.identifier.wok | 000566773200005 | |
utb.source | j-scopus | |
dc.date.accessioned | 2020-08-13T13:10:36Z | |
dc.date.available | 2020-08-13T13:10:36Z | |
dc.description.sponsorship | Operational Program for Research, Development, and Education; European UnionEuropean Union (EU) [CZ.02.2.69/0.0/0.0/16_027/0008464]; [IGA/CPS/2018/006]; [IGA/CPS/2019/002] | |
utb.contributor.internalauthor | Gajzlerová, Lenka | |
utb.contributor.internalauthor | Navrátilová, Jana | |
utb.contributor.internalauthor | Ryzí, Adriana | |
utb.contributor.internalauthor | Slaběňáková, Tereza | |
utb.contributor.internalauthor | Čermák, Roman | |
utb.fulltext.affiliation | L. Gajzlerova*, J. Navratilova, A. Ryzi, T. Slabenakova, R. Cermak Tomas Bata University in Zlin, Faculty of Technology, Vavreckova 275, 760 01 Zlin, Czech Republic * Corresponding author, e-mail: [email protected] | |
utb.fulltext.dates | Received 6 January 2020; accepted in revised form 22 March 2020 | |
utb.fulltext.references | [1] Nam G. J., Yoo J. H., Lee J. W.: Effect of long-chain branches of polypropylene on rheological properties and foam-extrusion performances. Journal of Applied Polymer Science, 96, 1793–1800 (2005). https://doi.org/10.1002/app.21619 [2] Wang K., Wang S., Wu F., Pang Y., Liu W., Zhai W., Zheng W.: A new strategy for preparation of long-chain branched polypropylene via reactive extrusion with supercritical CO2 designed for an improved foaming approach. Journal of Materials Science, 51, 2705–2715 (2016). https://doi.org/10.1007/s10853-015-9584-x [3] Gotsis A. D., Zeevenhoven B. L., Hogt A. H.: The effect of long chain branching on the processability of poly - propylene in thermoforming. Polymer Engineering and Science, 44, 973–982 (2004). https://doi.org/10.1002/pen.20089 [4] McCallum T. J., Kontopoulou M., Park C. B., Muliawan E. B., Hatzikiriakos S. G.: The rheological and physical properties of linear and branched polypropylene blends. Polymer Engineering and Science, 47, 1133-1140 (2007). https://doi.org/10.1002/pen.20798 [5] Weng W., Hu W., Dekmerzian A. H., Ruff C. J.: Long chain branched isotactic polypropylene. Macromolecules, 35, 3838–3843 (2002). https://doi.org/10.1021/ma020050j [6] Langston J. A., Colby R. H., Chung T. C. M., Shimizu F., Suzuki T., Aoki M.: Synthesis and characterization of long chain branched isotactic polypropylene via metallocene catalyst and T-reagent. Macromolecules, 40, 2712–2720 (2007). https://doi.org/10.1021/ma062111+ [7] Krause B., Stephan M., Volkland S., Voigt D., Häußler L., Dorschner H.: Long-chain branching of polypropylene by electron-beam irradiation in the molten state. Journal of Applied Polymer Science, 99, 260–265 (2006). https://doi.org/10.1002/app.22471 [8] Lugăo A. B., Otaguro H., Parra D. F., Yoshiga A., Lima L. F. C. P., Artel B. W. H., Liberman S.: Review on the production process and uses of controlled rheology poly - propylene – Gamma radiation versus electron beam processing. Radiation Physics and Chemistry, 76, 1688–1690 (2007). https://doi.org/10.1016/j.radphyschem.2007.01.015 [9] Graebling D.: Synthesis of branched polypropylene by a reactive extrusion process. Macromolecules, 35, 4602–4610 (2002). https://doi.org/10.1021/ma0109469 [10] Mogilicharla A., Majumdar S., Mitra K.: Multiobjective optimization of long-chain branched propylene polymerization. Polymer Engineering and Science, 55, 1067–1076 (2015). https://doi.org/10.1002/pen.23977 [11] Naguib H. E., Park C. B., Panzer U., Reichelt N.: Strategies for achieving ultra low-density polypropylene foams. Polymer Engineering and Science, 42, 1481–1492 (2002). https://doi.org/10.1002/pen.11045 [12] Reichelt N., Stadlbauer M., Folland R., Park C. B., Wang J.: PP-blends with tailored foamability and mechanical properties. Cellular Polymers, 22, 315–328 (2003). https://doi.org/10.1177/026248930302200503 [13] Padden F. J., Keith H. D.: Spherulitic crystallization in polypropylene. Journal of Applied Physics, 30, 1479–1484 (1959). https://doi.org/10.1063/1.1734985 [14] Natta G., Corradini P.: Structure and properties of isotactic polypropylene. Nuovo Cimento, 15, 40–51 (1960). https://doi.org/10.1007/BF02731859 [15] Corradini P., Petraccone V., de Rosa C., Guerra G.: On the structure of the quenched mesomorphic phase of isotactic polypropylene. Macromolecules, 19, 2699–2703 (1986). https://doi.org/10.1021/ma00165a006 [16] Gahleitner M., Mileva D., Androsch R., Gloger D., Tranchida D., Sandholzer M., Doshev P.: Crystallinitybased product design: Utilizing the polymorphism of isotactic PP homo- and copolymers. International Polymer Processing, 31, 618–627 (2016). https://doi.org/10.3139/217.3242 [17] Chvatalová L., Navratilová J., Čermák R., Raab M., Obadal M.: Joint effects of molecular structure and processing history on specific nucleation of isotactic poly - propylene. Macromolecules, 42, 7413–7417 (2009). https://doi.org/10.1021/ma9005878 [18] Varga J.: β-modification of isotactic polypropylene: Preparation, structure, processing, and application. Journal of Macromolecular Science Part B: Physics, 41, 1121–1171 (2002). https://doi.org/10.1081/MB-120013089 [19] Turner Jones A., Aizlewood J. M., Beckett D. R.: Crystalline forms of isotactic polypropylene. Macromolecular Chemistry and Physics, 75, 134–158 (1964). https://doi.org/10.1002/macp.1964.020750113 [20] Varga J.: Crystallization, melting and supermolecular structure of isotactic polypropylene. in ‘Polypropylene structure, blends and composites Vol. 1, Structure and morphology’ (ed.: Karger-Kocsis J.) Chapman and Hall, London, 56–115 (1995). [21] Varga J.: Supermolecular structure of isotactic poly - propylene. Journal of Materials Science, 27, 2557–2579 (1992). https://doi.org/10.1007/BF00540671 [22] Karger-Kocsis J., Varga J.: Effects of β-α transformation on the static and dynamic tensile behavior of isotactic polypropylene. Journal of Applied Polymer Science, 62, 291–300 (1996). https://doi.org/10.1002/(SICI)1097-4628(19961010)62:2<291 | |
utb.fulltext.sponsorship | This article was written with the support of Operational Program for Research, Development, and Education, co-funded by the European Union, within the framework of the project ‘International Mobility of Researchers of TBU in Zlín’ (Reg. number: CZ.02.2.69/0.0/0.0/16_027/0008464) and by the internal grant agency of the projects IGA/CPS/2018/006 and IGA/CPS/2019/002. The authors kindly acknowledge to Jirina Dohnalova for her help with sample preparation and testing. | |
utb.wos.affiliation | [Gajzlerova, L.; Navratilova, J.; Ryzi, A.; Slabenakova, T.; Cermak, R.] Tomas Bata Univ Zlin, Fac Technol, Vavreckova 275, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Tomas Bata University in Zlin, Faculty of Technology, Vavreckova 275, Zlin, 760 01, Czech Republic | |
utb.fulltext.projects | CZ.02.2.69/0.0/0.0/16_027/0008464 | |
utb.fulltext.projects | IGA/CPS/2018/006 | |
utb.fulltext.projects | IGA/CPS/2019/002 |