Kontaktujte nás | Jazyk: čeština English
dc.title | A high-resilience and conductive composite binder for lithium-sulfur batteries | en |
dc.contributor.author | Zheng, Mengyao | |
dc.contributor.author | Cai, Xiaomin | |
dc.contributor.author | Tan, Yafang | |
dc.contributor.author | Wang, Wenqiang | |
dc.contributor.author | Wang, Dongya | |
dc.contributor.author | Fei, Haojie | |
dc.contributor.author | Sáha, Petr | |
dc.contributor.author | Wang, Gengchao | |
dc.relation.ispartof | Chemical Engineering Journal | |
dc.identifier.issn | 1385-8947 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2020 | |
utb.relation.volume | 389 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Elsevier B.V. | |
dc.identifier.doi | 10.1016/j.cej.2020.124404 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S1385894720303958 | |
dc.subject | conductive binder | en |
dc.subject | dynamic cross-linking | en |
dc.subject | polysulfides adsorption | en |
dc.subject | sulfur cathodes | en |
dc.description.abstract | Binder is very important for the cycle stability of lithium-sulfur batteries under high sulfur loading. In this paper, we designed and prepared a waterborne polyurethane/polyacrylic acid/graphene (WPU/PAA/GN) multi-functional composite binder. The polyoxyethylene segments in WPU are used to promote the migration of lithium ions and provide high elongation. The introduction of polyacrylic acid (PAA) and graphene forms a double hydrogen bond network through simple in situ blending, which gives the binder higher strength and electronic conductivity. More importantly, the physical crosslinking of PAA and WPU can achieve high resilience and ensure the integrity of the cathode structure during charging and discharging. In addition, abundant polar functional groups provide strong chemical adsorption for lithium polysulfide. The synergistic effect of various components makes the binder possess the functions of high resilience, good electrical conductivity, and strong adsorption, which provides a simple and effective solution for the practical application of lithium-sulfur batteries. As a result, the assembled lithium-sulfur battery displayed a high initial discharge capacity of 1243 mAh g−1, good cycle stability (81% capacity retention after 500 cycles at 0.5 C) and superior rate performance. © 2020 Elsevier B.V. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1009573 | |
utb.identifier.obdid | 43881695 | |
utb.identifier.scopus | 2-s2.0-85079417922 | |
utb.identifier.wok | 000519528800007 | |
utb.identifier.coden | CMEJA | |
utb.source | j-scopus | |
dc.date.accessioned | 2020-03-02T12:28:37Z | |
dc.date.available | 2020-03-02T12:28:37Z | |
dc.description.sponsorship | National Natural Science Foundation of ChinaNational Natural Science Foundation of China [21875065, 51673064]; International Science & Technology Cooperation Program of China [2016YFE0131200] | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Fei, Haojie | |
utb.contributor.internalauthor | Sáha, Petr | |
utb.fulltext.affiliation | Mengyao Zhenga 1, Xiaomin Caia 1, Yafang Tana, Wenqiang Wanga, Dongya Wanga, Haojie Feib, Petr Sahab, Gengchao Wanga ⁎ a Shanghai Key Laboratory of Advanced Polymeric Materials, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, P.O. Box 289, 130 Meilong Rd., Shanghai 200237, PR China b Centre of Polymer Systems, University Institute, Tomas Bata University, Tř. T. Bati 5678, Zlin-76001 Zlín, Czech Republic * Corresponding author. E-mail address: [email protected] (G. Wang). 1 These authors contributed equally. | |
utb.fulltext.dates | Received 17 December 2019 Received in revised form 5 February 2020 Accepted 9 February 2020 Available online 10 February 2020 | |
utb.fulltext.sponsorship | We greatly appreciate the financial supports of National Natural Science Foundation of China ( 21875065 , 51673064 ), and International Science & Technology Cooperation Program of China ( 2016YFE0131200 ). | |
utb.wos.affiliation | [Zheng, Mengyao; Cai, Xiaomin; Tan, Yafang; Wang, Wenqiang; Wang, Dongya; Wang, Gengchao] East China Univ Sci & Technol, Shanghai Engn Res Ctr Hierarch Nanomat, Sch Mat Sci & Engn, Shanghai Key Lab Adv Polymer Mat, POB 289,130 Meilong Rd, Shanghai 200237, Peoples R China; [Fei, Haojie; Saha, Petr] Tomas Bata Univ, Univ Inst, Ctr Polymer Syst, Tr T Bati 5678, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Shanghai Key Laboratory of Advanced Polymeric Materials, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, P.O. Box 289, 130 Meilong Rd., Shanghai, 200237, China; Centre of Polymer Systems, University Institute, Tomas Bata University, Tř. T. Bati 5678, Zlin-76001 Zlín, Czech Republic | |
utb.fulltext.projects | 21875065 | |
utb.fulltext.projects | 51673064 | |
utb.fulltext.projects | 2016YFE0131200 | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.ou | Centre of Polymer Systems | |
utb.fulltext.ou | Centre of Polymer Systems |