Publikace UTB
Repozitář publikační činnosti UTB

Hierarchical PANI/NiCo-LDH core-shell composite networks on carbon cloth for high performance asymmetric supercapacitor

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Hierarchical PANI/NiCo-LDH core-shell composite networks on carbon cloth for high performance asymmetric supercapacitor en
dc.contributor.author Ge, Xinjin
dc.contributor.author He, Ying
dc.contributor.author Plachý, Tomáš
dc.contributor.author Kazantseva, Natalia E.
dc.contributor.author Sáha, Petr
dc.contributor.author Cheng, Qilin
dc.relation.ispartof Nanomaterials
dc.identifier.issn 2079-4991 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2019
utb.relation.volume 9
utb.relation.issue 4
dc.type article
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/nano9040527
dc.subject polyaniline nanofibers en
dc.subject layered double hydroxides en
dc.subject core-shell structure en
dc.subject electrochemical performance en
dc.subject supercapacitor en
dc.description.abstract In this work, a facile two-step strategy is adopted to construct hierarchical polyaniline/ NiCo-layered double hydroxide (PANI/NiCo-LDH) core-shell composite nanofiber networks on carbon cloth (CC). Three-dimensional (3D) porous PANI nanofiber networks are firstly uniformly anchored on CC by in-situ oxidative polymerization, followed by growth of NiCo-LDH nanoflakes on the crosslinked PANI framework via electrochemical deposition. The morphology and electrochemical properties of PANI/NiCo-LDH composites are controlled by the deposition time of LDH. Benefiting from rapid electron transport and ion diffusion, the well-defined PANI/NiCo-LDH hierarchical composite with 200 s deposition of LDH delivers a large capacitance of 1845 F g -1 at 0.5 A g -1 and excellent cycling stability of 82% capacitance retention after 5000 cycles at a very high current density of 10.0 A g -1 . Furthermore, an asymmetric supercapacitor (ASC) assembled with PANI/NiCo-LDH as a positive electrode and activated carbon (AC) as a negative electrode exhibits a high capacitance of 147.2 F g -1 in a potential range from 0 to 1.5 V and superior energy density of 46.0 Wh kg -1 at a power density of 351.6W kg -1 . © 2019 by the authors. Licensee MDPI, Basel, Switzerland. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1008675
utb.identifier.obdid 43880482
utb.identifier.scopus 2-s2.0-85065473611
utb.identifier.wok 000467768800043
utb.identifier.pubmed 30987112
utb.source j-scopus
dc.date.accessioned 2019-07-08T12:00:01Z
dc.date.available 2019-07-08T12:00:01Z
dc.description.sponsorship National Key R&D Program of China [2016YFE0131200]; National Natural Science Foundation of China [51702098]; International Cooperation Project of Shanghai Municipal Science and Technology Committee [18520744400]; Ministry of Education, Youth, and Sports of the Czech Republic [LTACH17015]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor He, Ying
utb.contributor.internalauthor Plachý, Tomáš
utb.contributor.internalauthor Kazantseva, Natalia E.
utb.contributor.internalauthor Sáha, Petr
utb.contributor.internalauthor Cheng, Qilin
utb.fulltext.affiliation Xinjin Ge 1, Ying He 1,2*, Tomas Plachy 2, Natalia Kazantseva 2, Petr Saha 2, Qilin Cheng 1,2* 1 Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; [email protected] 2 Centre of Polymer Systems, Tomas Bata University in Zlin, nam. Masaryka T.G. 5555, 760 01 Zlin, Czech Republic; [email protected] (T.P.); [email protected] (N.K.); [email protected] (P.S.) * Correspondence: [email protected] (Y.H.); [email protected] (Q.C.)
utb.fulltext.dates Received: 4 March 2019 Accepted: 21 March 2019 Published: 3 April 2019
utb.scopus.affiliation Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China; Centre of Polymer Systems, Tomas Bata University in Zlin, nam. Masaryka T.G. 5555, Zlin, 760 01, Czech Republic
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International