Kontaktujte nás | Jazyk: čeština English
dc.title | Effects of thermal annealing as polymer processing step on poly(lactic acid) | en |
dc.contributor.author | Pastorek, Miroslav | |
dc.contributor.author | Kovalčík, Adriána | |
dc.relation.ispartof | Materials and Manufacturing Processes | |
dc.identifier.issn | 1042-6914 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2018 | |
utb.relation.volume | 33 | |
utb.relation.issue | 15 | |
dc.citation.spage | 1674 | |
dc.citation.epage | 1680 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Taylor and Francis Inc. | |
dc.identifier.doi | 10.1080/10426914.2018.1453153 | |
dc.relation.uri | https://www.tandfonline.com/doi/full/10.1080/10426914.2018.1453153 | |
dc.subject | Additives | en |
dc.subject | annealing | en |
dc.subject | creep | en |
dc.subject | crystallinity | en |
dc.subject | kaolin | en |
dc.subject | nucleation | en |
dc.subject | poly(lactic acid) | en |
dc.subject | processing | en |
dc.subject | stability | en |
dc.subject | thermoforming | en |
dc.subject | wood | en |
dc.description.abstract | Thermal annealing as an additional polymer processing step or post-treatment processing step enables the structural changes of amorphous parts into crystalline parts. This paper investigates the feasibility of thermal annealing at 100°C up to 90 min used as an additional processing step to modify the crystalline structure and the thermo-mechanical stability of poly(lactic acid) (PLA). Moreover, the crystallization ability of PLA has been amended by the addition of 3 wt% of wood flour and kaolin. The values of the degree of crystallinity and lamellar thickness determined by wide-angle-X-ray scattering showed that the thermal annealing of PLA samples modified with nucleating agents was an efficient processing step to increase the final crystallinity of PLA. Moreover, altered crystalline structure helped to improve the thermomechanical stability of PLA. © 2018, © 2018 Taylor & Francis. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1008194 | |
utb.identifier.obdid | 43879682 | |
utb.identifier.scopus | 2-s2.0-85044442999 | |
utb.identifier.wok | 000443903800007 | |
utb.identifier.coden | MMAPE | |
utb.source | j-scopus | |
dc.date.accessioned | 2018-10-03T11:13:01Z | |
dc.date.available | 2018-10-03T11:13:01Z | |
dc.description.sponsorship | European Regional Development Fund (EFRE); province of Upper Austria through program IWB 2014-2020 - Upper Austria, project BioRest; project Technology Agency of the Czech Republic (TACR) "Centre of Advanced Polymeric and Composite Materials" - Ministry of Education, Youth and Sports of the Czech Republic [TE 01020216]; Program NPU I - Ministry of Education, Youth and Sports of the Czech Republic [LO1504]; project "Materials Research Centre - Sustainability and Development" - Ministry of Education, Youth and Sports of the Czech Republic [LO1211] | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Pastorek, Miroslav | |
utb.fulltext.affiliation | Miroslav Pastorek a and Adriana Kovalcik b,c http://orcid.org/0000-0003-4833-7369 a Centre of Polymer Systems, Tomas Bata University in Zlín, Zlín, Czech Republic; b Kompetenzzentrum Holz GmbH (Wood K Plus), Linz, Austria; c Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic CONTACT Adriana Kovalcik [email protected] Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic. | |
utb.fulltext.dates | Received 27 April 2017 Accepted 24 January 2018 Published online: 28 Mar 2018 | |
utb.fulltext.references | [1] Inkinen, S.; Hakkarainen, M.; Albertsson, A.-C.; Sodergard, A. From Lactic Acid to Poly(lactic acid) (PLA): Characterization and Analysis of PLA and Its Precursors. Biomacromolecules 2011, 12(3), 523–532. DOI: 10.1021/bm101302t. [2] Albertsson, A.-C.; Varma, I. K. Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications. Biomacromolecules 2003, 4(6), 1466–1486. DOI: 10.1021/bm034247a. [3] Auras, R.; Harte, B.; Selke, S. An Overview of Polylactides as Packaging Materials. Macromol. Biosci. 2004, 4(9), 835–864. DOI: 10.1002/mabi.200400043. [4] Anderson, K. S.; Schreck, K. M.; Hillmyer, M. A. Toughening Polylactide. Polym. Rev. 2008, 48(1), 85–108. DOI: 10.1080/15583720701834216. [5] Averous, L. Polylactic Acid: Synthesis, Properties and Applications. In Monomers, Polymers and Composites from Renewable Resources; Gandini, A.; Belgacem, M. N., Eds.; Elsevier Science: Oxford, 2008; pp 433–450. [6] Sasaki, S.; Asakura, T. Helix Distortion and Crystal Structure of the α-Form of Poly(L-lactide). Macromolecules 2003, 36(22), 8385–8390. DOI: 10.1021/ma0348674. [7] Mueller, A. J.; Avila, M.; Saenz, G.; Salazar, J. Crystallization of PLABased Materials. In RSC Polymer Chemistry Series 12 (Poly(Lactic Acid) Science and Technology); Jimenez, J.; Peltzer, M.; Ruseckaite, R., Eds.; Royal Society of Chemistry: London, 2015; pp 66–98. [8] Zhang, J.; Duan, Y.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Crystal Modifications and Thermal Behavior of Poly(l-lactic acid) Revealed by Infrared Spectroscopy. Macromolecules 2005, 38(19), 8012–8021. DOI: 10.1021/ma051232r. [9] Pan, P.; Zhu, B.; Kai, W.; Dong, T.; Inoue, Y. Effect of Crystallization Temperature on Crystal Modifications and Crystallization Kinetics of Poly(L-lactide). J. Appl. Polym. Sci. 2008, 107(1), 54–62. DOI: 10.1002/app.27102. [10] Hoogsteen, W.; Postema, V.; Pennings, A. J.; Ten Brinke, G.; Zugenmaier, P. Crystal Structure, Conformation and Morphology of Solution-Spun Poly(L-lactide) Fibers. Macromolecules 1990, 23(2), 634–642. DOI: 10.1021/ma00204a041. [11] Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Epitaxial Crystallization and Crystalline Polymorphism of Polylactides. Polymer 2000, 41(25), 8909–8919. DOI: 10.1016/s0032-3861(00)00234-2. [12] Martins, J. A.; Cruz-Pinto, J.J. C.; Oliveira, M. J. Polymer Crystallization. Isothermal and Nonisothermal Spherulite Growth Parameters from Optical Microscopy and Differential Scanning Calorimetry. J. Therm. Anal. Calor. 1993, 40(2), 629–636. DOI: 10.1007/bf02546633. [13] Lorenzo, A. T.; Arnal, M. L.; Albuerne, J.; Mueller, A. J. DSC Isothermal Polymer Crystallization Kinetics Measurements and the Use of the Avrami Equation to Fit The Data: Guidelines to Avoid Common Problems. Polym. Test. 2007, 26(2), 222–231. DOI: 10.1016/j.polymertesting.2006.10.005. [14] Battegazzore, D.; Bocchini, S.; Frache, A. Crystallization Kinetics of Poly(lactic acid)/Talc Composites. Express Polym. Lett. 2011, 5(10), 849–858. DOI: 10.3144/expresspolymlett.2011.84. [15] Kovalcik, A.; Perez-Camargo, R. A.; Fuerst, C.; Kucharczyk, P.; Mueller, A. J. Nucleating Efficiency and Thermal Stability of Industrial Non-Purified Lignins and Ultrafine Talc in Poly(lactic acid) (PLA). Polym. Degrad. Stab. 2017, 142, 244–254. DOI: 10.1016/j.polymdegradstab.2017.07.009. [16] Yin, H.-Y.; Wei, X.-F.; Bao, R.-Y.; Dong, Q.-X.; Liu, Z.-Y.; Yang, W.; Xie, B.-H.; Yang, M.-B. High-Melting-Point Crystals of Poly(L-lactic acid) (PLLA): The Most Efficient Nucleating Agent to Enhance the Crystallization of PLLA. CrystEngComm 2015, 17(11), 2310–2320. DOI: 10.1039/c4ce02497d. [17] Schäfer, H.; Kovalcik, A. Crystallization Kinetics of Poly(Lactic Acid) during Melt Processing. In Current Advances in Biopolymer Processing & Characterization; Koller, M., Ed.; Nova Science Publishers: New York, 2017. [18] Nascimento, L.; Gamez-Perez, J.; Santana, O. O.; Velasco, J. I.; Maspoch, M. L.; Franco-Urquiza, E. Effect of the Recycling and Annealing on the Mechanical and Fracture Properties of Poly(lactic acid). J. Polym. Environ. 2010, 18(4), 654–660. DOI: 10.1007/s10924-010-0229-5. [19] Mallet, B.; Lamnawar, K.; Maazouz, A. Improvement of Blown Film Extrusion of Poly(Lactic Acid): Structure-Processing-Properties Relationships. Polym. Eng. Sci. 2014, 54(4), 840–857. DOI: 10.1002/pen.23610. [20] Carletti, E.; Motta, A.; Migliaresi, C. Scaffolds for Tissue Engineering and 3D Cell Culture. Methods Mol. Biol. 2011, 695, 17–39. DOI: 10.1007/978-1-60761-984-0_2. [21] Kao, C.-T.; Lin, C.-C.; Chen, Y.-W.; Yeh, C.-H.; Fang, H.-Y.; Shie, M.-Y. Poly(dopamine) Coating of 3D Printed Poly(lactic acid) Scaffolds for Bone Tissue Engineering. Mater. Sci. Eng. C, Mater. Biol. Appl. 2015, 56, 165–173. DOI: 10.1016/j.msec.2015.06.028. [22] Yang, N;. Sun, Z.-X.; Feng, L.-S.; Zheng, M.-Z.; Chi, D.-C.; Meng, W.-Z.; Hou, Z.-Y.; Bai, W.; Li, V. Plastic Film Mulching for Water-Efficient Agricultural Applications and Degradable Films Materials Development Research. Mater. Manuf. Processes 2015, 30(2), 143–154. DOI: 10.1080/10426914.2014.930958. [23] Jackiewicz, J. Manufacturing of Instructional Aids for Students at Low Cost by Means of 3D Printing. Mater. Manuf. Processes 2017, 32(10), 1116–1130. DOI: 10.1080/10426914.2016.1257135. [24] Huang, Z.-X.; Wu, J.-W.; Wong, S.-C.; Qu, J.-P.; Srivatsan, T. S. The Technique of Electrospinning for Manufacturing Core-Shell Nanofibers. Mater. Manuf. Processes 2017, 33(2), 202–219. DOI: 10.1080/10426914.2017.1303144. [25] Tao, Y.; Wang, H.; Li, Z.; Li, P.; Shi, S. Q. Development and Application of Wood Flour-Filled Polylactic Acid Composite Filament for 3D Printing. Materials 2017, 10(4), 339. DOI: 10.3390/ma10040339. [26] Kearns, A.; Venditti, R. A.; Jur., J.; Farahbakhsh, N. Micro and Nano Composites using Cotton Materials Loaded in Polylactic Acid and Applications in 3D printing. Abstracts of Papers, 253rd ACS National Meeting & Exposition, San Francisco, CA, April 2–6, 2017, CELL-180. [27] Gregorova, A.; Sedlarik, V.; Pastorek, M.; Jachandra, H.; Stelzer, F. Effect of Compatibilizing Agent on the Properties of Highly Crystalline Composites Based on Poly(lactic acid) and Wood Flour and/or Mica. J. Polym. Environ. 2011, 19(2), 372–381. DOI: 10.1007/s10924-011-0292-6. [28] Ouchiar, S.; Stoclet, G.; Cabaret, C.; Gloaguen, V. Influence of the Filler Nature on the Crystalline Structure of Polylactide-Based Nanocomposites: New Insights into the Nucleating Effect. Macromolecules 2016, 49(7), 2782–2790. DOI: 10.1021/acs.macromol.5b02746. [29] Vonk, C. Computerization of Ruland’s X-Ray method for Determination of the Crystallinity in Polymers. J. Appl. Crystallogr. 1973, 6 (2), 148–152. DOI: 10.1107/s0021889873008332. [30] Patterson, A. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56(10), 978–982. DOI: 10.1103/physrev.56.978. [31] Dong, J.; Li, M.; Zhou, L.; Lee, S.; Mei, C.; Xu, X.; Wu, Q. The Influence of Grafted Cellulose Nanofibers and Postextrusion Annealing Treatment on Selected Properties of Poly(lactic acid) Filaments for 3D Printing. J. Polym. Sci. Part B Polym. Phys. 2017, 55(11), 847–855. DOI: 10.1002/polb.24333. [32] Morel, F.; Espuche, E.; Bounor-Legare, V.; Persynn, O.; Lacroix, M. Impact of Coated Calcium Carbonate Nanofillers and Annealing Treatments on the Microstructure and Gas Barrier Properties of Poly(lactide) Based Nanocomposite Films. J. Polym. Sci. Part B Polym. Phys 2016, 54(6), 649–658. DOI: 10.1002/polb.23957. [33] Yao, K.; Wen, X.; Tan, H.; Gong, J.; Zheng, J.; Zhao, W.; Wang, Y.; Cui, D.; Na, H.; Tang, T. Insight on the Striking Influence of the Chain Architecture on Promoting the Exfoliation of Clay in a Polylactide Matrix During the Annealing Process. Soft Matt. 2013, 9(45), 10891–10898. DOI: 10.1039/c3sm52149d. [34] Perez-Fonseca, A. A.; Robledo-Ortiz, J. R.; Gonzalez-Nunez, V R.; Rodrigue, D. Effect of Thermal Annealing on the Mechanical and Thermal Properties of Polylactic Acid-Cellulosic Fiber Biocomposites. J. Appl. Polym. Sci. 2016, 133(31), n/a. DOI: 10.1002/app.43750. [35] Tang, Z.; Zhang, C.; Liu, X.; Zhu, J. The Crystallization Behavior and Mechanical Properties of Polylactic Acid in the Presence of a Crystal Nucleating Agent. J. Appl. Polym. Sci. 2012, 125(2), 1108–1115. DOI: 10.1002/app.34799. [36] Mathew, A. P.; Oksman, K.; Sain, M. Mechanical Properties of Biodegradable Composites from Poly Lactic Acid (PLA) and Microcrystalline Cellulose (MCC). J. Appl. Polym. Sci. 2005, 97(5), 2014–2025. DOI: 10.1002/app.21779. [37] Winter, A.; Mundigler, N.; Holzweber, J.; Veigl, S.; Müller, U.; Kovalcik, A.; Gindl-Altmutter, W. Residual Wood Polymers Facilitate Compounding of Microfibrillated Cellulose with Poly(lactic-acid) for 3D Printer Filaments. Philos. Trans. A 2017, 376(2112), 20170046. DOI: 10.1098/rsta.2017.0046. [38] Righetti, M. C.; Gazzano, M.; Di Lorenzo, M. L.; Androsch, R. Enthalpy of Melting of α0-and α-Crystals of Poly(l-lactic acid). Eur. Polym. J. 2015, 70, 215–220. DOI: 10.1016/j.eurpolymj.2015.07.024. [39] Cocca, M.; Di Lorenzo, M. L.; Malinconico, M.; Frezza, V. Influence of Crystal Polymorphism on Mechanical and Barrier Properties of Poly(L-lactic acid). Eur. Polym. J. 2011, 47(5), 1073–1080. DOI: 10.1016/j.eurpolymj.2011.02.009. [40] Jalali, A.; Huneault, M. A.; Elkoun, S. Effect of Thermal History on Nucleation and Crystallization of Poly(L-lactic acid). J. Mater. Sci. 2016, 51(16), 7768–7779. DOI: 10.1007/s10853-016-0059-5. [41] Bartczak, Z.; Grala, M. Toughening of Semicrystalline and Amorphous Polylactide with Atactic Polyhydroxybutyrate. Polym.-Plast. Technol. Eng. 2017, 56(1), 29–43. DOI: 10.1080/03602559.2016.1185664. [42] Petinakis, E.; Yu, L.; Edward, G.; Dean, K.; Liu, H.; Scully, A. D. Effect of Matrix-Particle Interfacial Adhesion on the Mechanical Properties of Poly(lactic acid)/Wood-Flour Micro-Composites. J. Polym. Environ. 2009, 17(2), 83–94. DOI: 10.1007/s10924-009-0124-0. [43] Menard, K. P. Dynamic Mechanical Analysis: A Practical Introduction, 2nd ed.; CRC Press Taylor & Francis Group: New York, 2008. | |
utb.fulltext.sponsorship | The authors acknowledge the support by European Regional Development Fund (EFRE) and the province of Upper Austria through program IWB 2014–2020 – Upper Austria, project BioRest and support through the project Technology Agency of the Czech Republic (TAČR) “Centre of Advanced Polymeric and Composite Materials” (TE 01020216), Program NPU I (LO1504) and the project “Materials Research Centre – Sustainability and Development” Nr. LO1211 - Ministry of Education, Youth and Sports of the Czech Republic. Moreover, we thanks to Ilena Kaltenböck for light microscopy. | |
utb.scopus.affiliation | Centre of Polymer Systems, Tomas Bata University in Zlín, Zlín, Czech Republic; Kompetenzzentrum Holz GmbH (Wood K Plus), Linz, Austria; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic | |
utb.fulltext.projects | IWB 2014–2020 | |
utb.fulltext.projects | TE 01020216 | |
utb.fulltext.projects | NPU I (LO1504) | |
utb.fulltext.projects | LO1211 |