Kontaktujte nás | Jazyk: čeština English
dc.title | Piezoresponse, mechanical, and electrical characteristics of synthetic spider silk nanofibers | en |
dc.contributor.author | Shehata, Nader | |
dc.contributor.author | Kandas, Ishac | |
dc.contributor.author | Hassounah, Ibrahim | |
dc.contributor.author | Sobolčiak, Patrik | |
dc.contributor.author | Krupa, Igor | |
dc.contributor.author | Mrlík, Miroslav | |
dc.contributor.author | Popelka, Anton | |
dc.contributor.author | Steadman, Jesse | |
dc.contributor.author | Lewis, Randolph | |
dc.relation.ispartof | Nanomaterials | |
dc.identifier.issn | 2079-4991 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2018 | |
utb.relation.volume | 8 | |
utb.relation.issue | 8 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | MDPI AG | |
dc.identifier.doi | 10.3390/nano8080585 | |
dc.relation.uri | http://www.mdpi.com/2079-4991/8/8/585 | |
dc.subject | spider silk | en |
dc.subject | sensor | en |
dc.subject | mechanical vibrations | en |
dc.subject | humidity | en |
dc.subject | piezoelectric | en |
dc.subject | nanofibers | en |
dc.description.abstract | This work presents electrospun nanofibers from synthetic spider silk protein, and their application as both a mechanical vibration and humidity sensor. Spider silk solution was synthesized from minor ampullate silk protein (MaSp) and then electrospun into nanofibers with a mean diameter of less than 100 nm. Then, mechanical vibrations were detected through piezoelectric characteristics analysis using a piezo force microscope and a dynamic mechanical analyzer with a voltage probe. The piezoelectric coefficient (d33) was determined to be 3.62 pC/N. During humidity sensing, both mechanical and electric resistance properties of spider silk nanofibers were evaluated at varying high-level humidity, beyond a relative humidity of 70%. The mechanical characterizations of the nanofibers show promising results, with Young’s modulus and maximum strain of up to 4.32 MPa and 40.90%, respectively. One more interesting feature is the electric resistivity of the spider silk nanofibers, which were observed to be decaying with humidity over time, showing a cyclic effect in both the absence and presence of humidity due to the cyclic shrinkage/expansion of the protein chains. The synthesized nanocomposite can be useful for further biomedical applications, such as nerve cell regrowth and drug delivery. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1008149 | |
utb.identifier.obdid | 43879687 | |
utb.identifier.scopus | 2-s2.0-85051280270 | |
utb.identifier.wok | 000443257500024 | |
utb.identifier.pubmed | 30071581 | |
utb.source | j-scopus | |
dc.date.accessioned | 2018-08-29T08:26:56Z | |
dc.date.available | 2018-08-29T08:26:56Z | |
dc.description.sponsorship | NPRP from the Qatar National Research Fund (Qatar Foundation) [NPRP 7-1724-3-438] | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Mrlík, Miroslav | |
utb.fulltext.affiliation | Nader Shehata 1,2,3,4,* https://orcid.org/0000-0002-2913-4825 , Ishac Kandas 1,2,4, Ibrahim Hassounah 3, Patrik Sobolčiak 5 https://orcid.org/0000-0002-4009-633X , Igor Krupa 5, Miroslav Mrlik 6 https://orcid.org/0000-0001-6203-6795 , Anton Popelka 5, Jesse Steadman 3 and Randolph Lewis 3 1 Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt; [email protected] 2 Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center, Alexandria University, Alexandria 21544, Egypt 3 USTAR Bioinnovations Center, Utah State University, Logan, UT 84341, USA; [email protected] (I.H.); [email protected] (J.S.); [email protected] (R.L.) 4 Physics Department, Kuwait College of Science and Technology (KCST), Doha District 13133, Kuwait 5 Center of Advanced Materials, Qatar University, Doha 2713, Qatar; [email protected] (P.S.); [email protected] (I.K.); [email protected] (A.P.) 6 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Zlin 76001, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +965-6501-9574 | |
utb.fulltext.dates | Received: 1 July 2018 Accepted: 17 July 2018 Published: 1 August 2018 | |
utb.fulltext.references | 1. Vollrath, F.; Knight, D.P. Liquid crystalline spinning of spider silk. Nature 2001, 410, 541–548. [CrossRef] [PubMed] 2. Bourzac, K. Spiders: Web of intrigue. Nature 2015, 519, S4–S6. [CrossRef] [PubMed] 3. Sionkowska, A. Current research on the blends of natural and synthetic polymers as new biomaterials. Rev. Prog. Polym. Sci. 2011, 36, 1254–1276. [CrossRef] 4. Lucas, F. Spiders and their silk. Discovery 1964, 25, 20–26. Vollrath, F. Spider webs and silks. Sci. Am. 1992, 266, 70–76. [CrossRef] 5. Zhou, L.; Fu, P.; Cai, X.; Zhou, S.; Yuan, Y. Naturally derived carbon nanofibers as sustainable electrocatalysts for microbial energy harvesting: A new application of spider silk. Appl. Catal. B Environ. 2016, 188, 31–38. [CrossRef] 6. Yu, Q.; Xu, S.; Zhang, H.; Gu, L.; Xu, Y.; Ko, F. Structure–property relationship of regenerated spider silk protein nano/microfibrous scaffold fabricated by electrospinning. J. Biomed. Mater. Res. 2014, 102, 3828–3837. [CrossRef] [PubMed] 7. Steins, A.; Dik, P.; Müller, W.H.; Vervoort, S.J.; Reimers, K.; Kuhbier, J.W.; Vogt, P.M.; van Apeldoorn, A.A.; 8. Coffer, P.J.; Schepers, K. In vitro evaluation of spider silk meshes as a potential biomaterial for bladder reconstruction. PLoS ONE 2015, 10, 0145240. [CrossRef] [PubMed] 9. Stauffer, S.; Cougill, S.; Lewis, R.V. Mechanical properties of several spider silks. J. Arachnol. 1994, 22, 5–11. 10. Copeland, C.; Bell, B.; Christensen, C.; Lewis, R. About development of a process for the spinning of synthetic spider silk. ACS Biomater. Sci. Eng. 2015, 1, 577–584. [CrossRef] [PubMed] 11. Munro, R.; Putzeys, T.; Copeland, C.; Xing, C.; Lewis, R.; Ban, H.; Glorieux, C.; Wubbenhorst, M. Investigation of Synthetic Spider Silk Crystallinity and Alignment via Electrothermal, Pyroelectric, Literature XRD, and Tensile Techniques. Macromol. Mater. Eng. 2017, 302, 1600480. [CrossRef] [PubMed] 12. Hinman, M.B.; Lewis, R.V. Isolation of a clone encoding a second dragline silk fibroin. J. Biol. Chem. 1992, 267, 19320–19324. [PubMed] 13. Colgin, M.; Lewis, R.V. Spider Minor Ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like “Spacer Regions”. Protein Sci. 1998, 7, 667–672. [CrossRef] [PubMed] 14. Jin, H.J.; Kaplan, D.L. Mechanism of silk processing in insects and spiders. Nature 2003, 424, 1057–1061. [CrossRef] [PubMed] 15. Keten, S.; Xu, Z.; Ihle, B.; Buehler, M.J. Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat. Mater. 2010, 9, 359–367. [CrossRef] [PubMed] 16. Porter, D.; Vollrath, F.; Shao, Z. Predicting the mechanical properties of spider silk as a model nanostructured polymer. Eur. Phys. J. E 2005, 16, 199–206. [CrossRef] [PubMed] 17. Yang, Z.; Zhou, S.; Zu, J.; Inman, D. High-Performance Piezoelectric Energy Harvesters and Their Applications. Joule 2018, 2, 642–697. [CrossRef] 18. Ando, Y.; Okano, R.; Nishida, K.; Miyata, S.; Fukada, E. Piezoelectric and related properties of hydrated silk fibroin. Rep. Prog. Polym. Phys. Jpn. 1980, 23, 775. 19. Jucel, T.; Cebe, P.; Caplan, D.L. Structural Origins of silk piezoelectricity. Adv. Func. Mater. 2011, 21, 779–785. 20. Staworko, M.; Uhl, T. Modeling and Simulation of Piezoelectric Elements-Comparison of Avaialable Methods and Tools Summary. Mechanics 2008, 27, 161–171. 21. Huang, L.; Bui, N.-N.; Manickam, S.S.; McCutcheon, J.R. Controlling Electrospun Nanofiber Morphology and Mechanical Properties Using Humidity. Polym. Phys. 2011, 49, 1734–1744. [CrossRef] | |
utb.fulltext.sponsorship | This research was funded by NPRP from the Qatar National Research Fund (A Member of the Qatar Foundation). Grant number is [NPRP 7-1724-3-438]. | |
utb.wos.affiliation | [Shehata, Nader; Kandas, Ishac] Alexandria Univ, Dept Engn Math & Phys, Fac Engn, Alexandria 21544, Egypt; [Shehata, Nader; Kandas, Ishac] Alexandria Univ, CSNP, SmartCI Res Ctr, Alexandria 21544, Egypt; [Shehata, Nader; Hassounah, Ibrahim; Steadman, Jesse; Lewis, Randolph] Utah State Univ, USTAR Bioinnovat Ctr, Logan, UT 84341 USA; [Shehata, Nader; Kandas, Ishac] Kuwait Coll Sci & Technol, Dept Phys, Doha Dist 13133, Kuwait; [Sobolciak, Patrik; Krupa, Igor; Popelka, Anton] Qatar Univ, Ctr Adv Mat, Doha 2713, Qatar; [Mrlik, Miroslav] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria, Egypt; Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center, Alexandria University, Alexandria, Egypt; USTAR Bioinnovations Center, Utah State University, Logan, UT, United States; Physics Department, Kuwait College of Science and Technology (KCST), Doha District 13133, Kuwait; Center of Advanced Materials, Qatar University, Doha, Qatar; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Zlin, Czech Republic | |
utb.fulltext.projects | NPRP 7-1724-3-438 |