Publikace UTB
Repozitář publikační činnosti UTB

Modified progressive random walk with chaotic PRNG

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Modified progressive random walk with chaotic PRNG en
dc.contributor.author Viktorin, Adam
dc.contributor.author Šenkeřík, Roman
dc.contributor.author Pluháček, Michal
dc.contributor.author Kadavý, Tomáš
dc.relation.ispartof International Journal of Parallel, Emergent and Distributed Systems
dc.identifier.issn 1744-5760 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 33
utb.relation.issue 5
dc.citation.spage 450
dc.citation.epage 459
dc.type article
dc.language.iso en
dc.publisher Taylor and Francis
dc.identifier.doi 10.1080/17445760.2017.1365864
dc.relation.uri https://www.tandfonline.com/doi/abs/10.1080/17445760.2017.1365864?journalCode=gpaa20
dc.subject chaos en
dc.subject fitness landscape analysis en
dc.subject Random walk en
dc.subject ruggedness en
dc.description.abstract In this paper, two modifications are proposed to the Progressive Random Walk (PRW) algorithm in order to address its potentially insufficient search space coverage. The first modification replaces the Pseudo-Random Number Generator (PRNG) with the uniform distribution by the chaotic map based PRNG for generating of the offset values and the second modification is called direction switching and is based on experiment observation. The modifications are implemented into the PRW and the resulting algorithm is called modified Progressive Random Walk. The search space coverage of the two algorithms is compared. Both algorithms are used in macro ruggedness estimation of the CEC2015 benchmark set and the results are discussed. © 2017, © 2017 Informa UK Limited, trading as Taylor & Francis Group. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1008096
utb.identifier.obdid 43877044
utb.identifier.scopus 2-s2.0-85027878570
utb.identifier.wok 000438453400002
utb.source j-scopus
dc.date.accessioned 2018-08-03T12:49:40Z
dc.date.available 2018-08-03T12:49:40Z
dc.description.sponsorship CZ.1.05/2.1.00/03.0089, FEDER, European Regional Development Fund; IGA/CebiaTech/2017/004; MSMT-7778/2014, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy; LO1303, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy; P103/15/06700S
dc.description.sponsorship Grant Agency of the Czech Republic - GACR [P103/15/06700S]; Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)]; European Regional Development Fund - CEBIA-Tech [CZ.1.05/2.1.00/03.0089]; Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2017/004]
utb.contributor.internalauthor Viktorin, Adam
utb.contributor.internalauthor Šenkeřík, Roman
utb.contributor.internalauthor Pluháček, Michal
utb.contributor.internalauthor Kadavý, Tomáš
utb.fulltext.affiliation Adam Viktorin, Roman Senkerik, Michal Pluhacek and Tomas Kadavy Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic CONTACT Adam Viktorin [email protected]
utb.fulltext.dates Received 30 April 2017 Accepted 7 August 2017
utb.fulltext.references [1] Rocca P, Oliveri G, Massa A. Differential evolution as applied to electromagnetics. IEEE Antennas Propag Mag. 2011;53(1):38–49. [2] Cai HR, Chung CY, Wong KP. Application of differential evolution algorithm for transient stability constrained optimal power flow. IEEE Trans Power Syst. 2008;23(2):719–728. [3] Shin KS, Lee YJ. A genetic algorithm application in bankruptcy prediction modeling. Expert Syst Appl. 2002;23(3):321–328. [4] Sahiner B, Chan HP, Wei D, et al. Image feature selection by a genetic algorithm: Application to classification of mass and normal breast tissue. Med Phys. 1996;23(10):1671–1684. [5] Del Valle Y, Venayagamoorthy GK, Mohagheghi S, et al. Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput. 2008;12(2):171–195. [6] Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comput. 1997;1(1):67–82. [7] Brest J, Greiner S, Boskovic B, et al. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput. 2006;10(6):646–657. [8] Omran MG, Salman A, Engelbrecht AP. Self-adaptive differential evolution. International Conference on Computational intelligence and security; Springer Berlin Heidelberg; 2005. p. 192–199. [9] Qin AK, Huang VL, Suganthan PN. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput. 2009;13(2):398–417. [10] Zhang J, Sanderson AC. JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput. 2009;13(5):945–958. [11] Tanabe R, Fukunaga A. Success-history based parameter adaptation for differential evolution. IEEE Congress on Evolutionary Computation (CEC). Cancun, Mexico; 2013. p. 71–78. [12] Zhan ZH, Zhang J, Li Y, et al. Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B. 2009;39(6):1362–1381. [13] Shi Y, Eberhart RC. Fuzzy adaptive particle swarm optimization. Proceedings of the 2001 Congress on Evolutionary Computation. Seoul, South Korea: IEEE; Vol. 1; 2001. p. 101–106. [14] Pluhacek M, Senkerik R, Zelinka I. Particle swarm optimization algorithm driven by multichaotic number generator. Soft Comput. 2014;18(4):631–639. [15] Malan KM, Engelbrecht AP. Particle swarm optimisation failure prediction based on fitness landscape characteristics. IEEE Symposium on Swarm Intelligence (SIS); Orlando, FL; 2014. p. 1–9. [16] He J, Reeves C, Witt C, et al. A note on problem difficulty measures in black-box optimization: classification, realizations and predictability. Evol Comput. 2007;15(4):435–443. [17] Bischl B, Mersmann O, Trautmann H, et al. Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. Proceedings of the 14th annual conference on Genetic and evolutionary computation. Philadelphia (PA): ACM; 2012. p. 313–320. [18] Morgan R, Gallagher M. Analysing and characterising optimization problems using length scale. Soft Comput. 2017;21:1735–1752. [19] Muñoz MA, Kirley M, Halgamuge SK. A meta-learning prediction model of algorithm performance for continuous optimization problems. Parallel problem solving from nature-PPSN XII; Springer Berlin Heidelberg; 2012. p. 226–235. [20] Malan KM, Engelbrecht AP. A progressive random walk algorithm for sampling continuous fitness landscapes. IEEE Congress on Evolutionary Computation (CEC); Beijing, China; 2014. p. 2507–2514. [21] Skanderova L, Zelinka I, Šaloun P. Chaos powered selected evolutionary algorithms. Nostradamus 2013: prediction, modeling and analysis of complex systems. Ostrava, Czech Republic: Springer International Publishing; 2013. p. 111–124. [22] Pluhacek M, Senkerik R, Zelinka I. Particle swarm optimization algorithm driven by multichaotic number generator. Soft Comput. 2014;18(4):631–639. [23] Senkerik R, Pluhacek M, Kominkova Oplatkova Z, et al. On the parameter settings for the chaotic dynamics embedded differential evolution. IEEE Congress on Evolutionary Computation (CEC). Sendai, Japan: IEEE; 2015. p. 1410–1417. [24] Caponetto R, Fortuna L, Fazzino S, et al. Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans Evol Comput. 2003;7(3):289–304. [25] Davendra D, Zelinka I, Senkerik R. Chaos driven evolutionary algorithms for the task of PID control. Comput Math Appl. 2010;60(4):1088–1104. [26] Malan KM, Engelbrecht AP. Quantifying ruggedness of continuous landscapes using entropy. IEEE Congress on Evolutionary Computation, CEC’09. Trondheim, Norway: IEEE; 2009. p. 1440–1447. [27] Chen Q, Liu B, Zhang Q, et al. Problem definition and evaluation criteria for CEC 2015 special session and competition on bound constrained single-objective computationally expensive numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, China and Nanyang Technological University, Singapore Tech. Rep; 2014. [28] Lozi R. Un attracteur étrange? Du type attracteur de Hénon. Le Journal de Physique Colloques. 1978;39(C5):9–10. [29] Nusse HE, Yorke JA. Dynamics: numerical explorations. New York (NY): Springer; 1994. [30] Whitehead RR, MacDonald N. A chaotic mapping that displays its own homoclinic structure. Physica D. 1984;13(3):401–407. [31] Schmidt G, Wang BW. Dissipative standard map. Phys Rev A. 1985;32(5):2994–2999.
utb.fulltext.sponsorship This work was supported by Grant Agency of the Czech Republic - GACR [grant number P103/15/06700S]; the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [grant number LO1303 (MSMT-7778/2014)]; the European Regional Development Fund - CEBIA-Tech [grant number CZ.1.05/2.1.00/03.0089]; Internal Grant Agency of Tomas Bata University [grant number IGA/CebiaTech/2017/004].
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic
utb.fulltext.projects GACR/P103/15/06700S
utb.fulltext.projects LO1303 (MSMT-7778/2014)
utb.fulltext.projects CZ.1.05/2.1.00/03.0089
utb.fulltext.projects IGA/CebiaTech/2017/004
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam