Kontaktujte nás | Jazyk: čeština English
dc.title | Effect of a hybrid zinc stearate-silver system on the properties of polylactide and its abiotic and the biotic degradation and antimicrobial activity thereof | en |
dc.contributor.author | Jandíková, Gabriela | |
dc.contributor.author | Štoplová, Petra | |
dc.contributor.author | Di Martino, Antonio | |
dc.contributor.author | Stloukal, Petr | |
dc.contributor.author | Kucharczyk, Pavel | |
dc.contributor.author | Machovský, Michal | |
dc.contributor.author | Sedlařík, Vladimír | |
dc.relation.ispartof | Chinese Journal of Polymer Science (English Edition) | |
dc.identifier.issn | 0256-7679 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2018 | |
utb.relation.volume | 36 | |
utb.relation.issue | 8 | |
dc.citation.spage | 925 | |
dc.citation.epage | 933 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.identifier.doi | 10.1007/s10118-018-2120-0 | |
dc.relation.uri | https://link.springer.com/article/10.1007/s10118-018-2120-0 | |
dc.subject | Polylactide | en |
dc.subject | Composite | en |
dc.subject | Biodegradation | en |
dc.subject | Zinc stearate | en |
dc.subject | Silver | en |
dc.subject | Antimicrobial | en |
dc.description.abstract | This work investigates the degradation and properties of a thermoplastically prepared composite comprising a polylactide/hybrid zinc stearate-silver system. The influence of the zinc stearate-silver system on the properties of the composite is investigated by electron microscopy, differential scanning calorimetry and tensile tests. Furthermore, the antimicrobial activities of the systems are examined. The degradation behaviour of the composites is studied in both abiotic and biotic (composting) environments at an elevated temperature of 58 °C. The results reveal good dispersion of the additive in the PLA matrix, a stabilizing effect exerted by the same on the polylactide matrix during processing, and slight reduction in glass transition temperature. The zinc stearate-silver component also reduces brittleness and extends elongation of the composite. Abiotic hydrolysis is not significantly affected, which is in contrast with pure PLA, although mineralization during the early stage of biodegradation increases noticeably. The composite exhibits antimicrobial activity, even at the lowest dosage of the zinc stearate/silver component (1 wt%). Moreover, Ag and Zn contents were found to be present in the composite during abiotic hydrolysis, which was demonstrated by minimal diffusion of Ag ions from the matrix and very extensive washing of compounds that contained Zn. © 2018, Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1008082 | |
utb.identifier.obdid | 43878228 | |
utb.identifier.scopus | 2-s2.0-85045937390 | |
utb.identifier.wok | 000436565500004 | |
utb.identifier.coden | CJPSE | |
utb.source | j-scopus | |
dc.date.accessioned | 2018-07-27T08:47:43Z | |
dc.date.available | 2018-07-27T08:47:43Z | |
dc.description.sponsorship | Czech Science Foundation [17-16928Y]; Ministry of Education, Youth and Sports of the Czech Republic within the NPU I programme [LO1504] | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Jandíková, Gabriela | |
utb.contributor.internalauthor | Štoplová, Petra | |
utb.contributor.internalauthor | Di Martino, Antonio | |
utb.contributor.internalauthor | Stloukal, Petr | |
utb.contributor.internalauthor | Kucharczyk, Pavel | |
utb.contributor.internalauthor | Machovský, Michal | |
utb.contributor.internalauthor | Sedlařík, Vladimír | |
utb.fulltext.affiliation | Gabriela Jandíková, Petra Stoplova, Antonio Di Martino, Petr Stloukal, Pavel Kucharczyk* , Michal Machovsky, and Vladimir Sedlarik Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, tr. Tomas Bati 5678, 760 01 Zlin, Czech Republic * Corresponding author: E-mail [email protected] | |
utb.fulltext.dates | Received December 2, 2017 Accepted February 3, 2018 Published online April 20, 2018 | |
utb.fulltext.references | 1 Izundia, E.; Larranaga, A.; Vilas, J. L.; Leon, L. M. Threedimensional orientation of poly (L-lactide) crystals under uniaxial drawing. RSC Adv. 2016, 6(15), 11943−11951. 2 Imre, B.; Pukánszky, B. Compatibilization in bio-based and biodegradable polymer blends. Eur. Polym. J. 2013, 49(6), 1215−1233. 3 Jacobsen, S.; Fritz H. G. Plasticizing effect of different plasticizers on the mechanical properties of polylactide. Polym. Eng. Sci. 1999, 39(7), 1303−1310. 4 Mekonnen, T.; Mussone, P.; Khalil, H.; Bressler, D. Progress in bio-based plastics and plasticizing modifications. J. Mater. Chem. A 2013, 1(43), 13379−13398. 5 Martin, O.; Averous, L. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 2001, 42(14), 6209−6219. 6 Maglio, G.; Malinconico, M.; Migliozzi, A.; Groeninckx, G. Immiscible poly(L-lactide)/poly(ε-caprolactone) blends: influence of the addition of a poly (L-lactide)-poly (oxyethylene) block copolymer on thermal behavior and morphology. Macromol. Chem. Phys. 2004, 205(7), 946−950. 7 Maglio, G.; Migliozzi, A.; Palumbo, R. Thermal properties of di- and triblock copolymers of poly(L-lactide) with poly(oxyethylene) or poly(ε-caprolactone). Polymer 2003, 44(2), 369−375. 8 Maglio, G.; Migliozzi, A.; Palumbo, R.; Immirzi, B.; Grazia Volpe, M. Compatibilized poly(ε-caprolactone)/poly(L-lactide) blends for biomedical uses. Macromol. Rapid Commun. 1999, 20(4), 236−238. 9 Galya, T.; Sedlarik, V.; Kuritka, I.; Sedlarikova, J.; Saha, P. Characterization of antibacterial polymeric films based on poly (vinyl alcohol) and zinc nitrate for biomedical applications. International Journal of Polymer Analysis and Characterization[online]. 2008, 13(4), 241−253. 10 Iqbal, N.; Kadir, M. R. A.; Nik Malek, N. A. N.; Mahmood, N. H.; Murali, M. R.; Kamarul, T. Rapid microwave assisted synthesis and characterization of nanosized silver-doped hydroxyapatite with antibacterial properties. Mater. Lett. 2012, 89, 118−122. 11 Bazant, P.; Munster, L.; Machovsky, M.; Sedlak, J.; Pastorek, M.; Kozakova, Z.; Kuritka, I. Wood flour modified by hierarchical Ag/ZnO as potential filler for wood-plastic composites with enhanced surface antibacterial performance. Ind. Crops Prod. 2014, 62, 179−187. 12 Breitwieser, D.; Moghaddam, M. M.; Spirk, S.; Baghbanzadeh, M.; Pivec, T.; Fasl, H.; Ribitsch, V.; Kappe, C. O. In situ preparation of silver nanocomposites on cellulosic fibersmicrowave vs conventional heating. Carbohydr. Polym. 2013, 94(1), 677−686. 13 Zhao, X.; Xia, Y.; Li, Q.; Ma, X.; Quan, F.; Geng, C.; Han, Z. Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloids Surf. A: Physicochem. Eng. As. 2014, 144, 180−188. 14 Pantani, R.; Gorrasi, G.; Vigliotta, G.; Murariu, M.; Dubois, P. PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics. Eur. Polym. J. 2013, 49(11), 3471−3482. 15 Kucharczyk, P.; Pavelková, A.; Stloukal, P.; Sedlarík, V. Degradation behaviour of PLA-based polyesterurethanes under abiotic and biotic environments. Polym. Degrad. Stab. 2016, 129(1), 222−230. 16 Stloukal, P.; Kucharczyk, P. Acceleration of polylactide degradation under biotic and abiotic conditions through utilization of a new, experimental, highly compatible additive. Polym. Degrad. Stab. 2017, 142(1), 217−225. 17 Lipik, V. T; Widjaja, L. K.; Liow, S. S.; Venkatraman, S. S. Effects of transesterification and degradation on properties and structure of polycaprolactone-polylactide copolymers. Polym. Degrad. Stab. 2010, 95, 2596−2602. 18 Undri, A.; Rosi, L.; Frediani, M.; Frediani, P. Conversion of poly(lactic acid) to lactide via microwave assisted pyrolysis. J. Anal. Appl. Pyrolysis 2014, 110, 55−65. 19 Salazar, R.; Domenek, S.; Plessis, C.; Ducruet, V. Quantitative determination of volatile organic compounds formed during polylactide processing by MHS-SPME. Polym. Degrad. Stab. 2017, 136, 80−88. 20 Badia, J. D.; Santonja-Blasco, L.; Moriana, R.; Amparo, R. G. Thermal analysis applied to the characterization of degradation in soil of polylactide: II On the thermal stability and thermal decomposition kinetics. Polym. Degrad. Stab. 2010, 95(1), 2192−2199. 21 Wang, M.; Xu, J.; Wu, H.; Guo, S. Effect of pentaerythritol and organic tin with calcium/zinc stearates on the stabilization of poly(vinyl chloride). Polym. Degrad. Stab. 2006, 91(9), 2101−2109. 22 Rosa, D. S.; Grillo, D.; Bardi, M. A. G.; Calil, M. R.; Guedes, C. G. F.; Ramires, E. C.; Frollini, E. Mechanical, thermal and morphological characterization of polypropylene/biodegradable polyester blends with additives. Polym. Test. 2009, 28(8), 836−842. 23 Farah, S.; Anderson, D. G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications-A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367−392. 24 Da Costa, H. M.; Abrantes T. A. S.; Nunes, R. C. R.; Visconte, L. L. Y.; Furtado, C. R. G. Design and analysis of experiments in silica filled natural rubber compounds-effect of castor oil. Polym. Test. 2003, 22(7), 769−777. 25 Cam, D.; Marucci, M. Influence of residual monomers and metals on poly(L-lactide) thermal stability. Polymer 1997, 38(8), 1879−1884. 26 White, R. P.; Lipson, J. E. G. Polymer free volume and its connection to the glass transition. Macromolecules 2016, 49(11), 3987−4007. 27 Eili, M.; Shameli, K.; Ibrahim, N. A.; Wan Yunus, W. M. Z. Degradability enhancement of poly(lactic acid) by stearateZn3Al LDH nanolayers. Int. J. Mol. Sci. 2012, 13(12), 7938−7951. 28 Jiang, L. J.; Zhang, J.; Wolcott, M. P. Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms. Polymer 2007, 48(26), 7632−7644. 29 Shankar, S.; Rhim, J. V. Tocopherol-mediated synthesis of silver nanoparticles and preparation of antimicrobial PBAT/silver nanoparticles composite films. LWT-Food Sci. Technol. 2016, 72, 149−156. 30 Egger, S.; Lehman, R. P.; Height, M. J.; Loessner, M. J.; Schuppler, M. Antimicrobial properties of a novel silver-silica nanocomposite material. Appl. Environ. Microbiol. 2009, 75(9), 2973−2976. 31 Shen, Y. CHEN, Z.; Hou, Z.; Li, T.; Lu, X. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front. Environ. Sci. Eng. 2015, 9(5), 912−918. 32 Dhas, S. P.; Shiny, P. J.; Khan, S.; Mukherjee, A.; Chandrasekaran, N. Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms. J. Basis. Microbiol. 2014, 54(9), 916−927. | |
utb.fulltext.sponsorship | This work was financially supported by the Czech Science Foundation (No. 17-16928Y) and by the Ministry of Education, Youth and Sports of the Czech Republic within the NPU I programme (No. LO1504). | |
utb.wos.affiliation | [Jandikova, Gabriela; Stoplova, Petra; Di Martino, Antonio; Stloukal, Petr; Kucharczyk, Pavel; Machovsky, Michal; Sedlarik, Vladimir] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Tr Tomas Bati 5678, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, tr. Tomas Bati 5678, Zlin, Czech Republic | |
utb.fulltext.projects | 17-16928Y | |
utb.fulltext.projects | LO1504 |