Publikace UTB
Repozitář publikační činnosti UTB

In vivo monitoring of tumor distribution of hyaluronan polymeric micelles labeled or loaded with near-infrared fluorescence dye

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title In vivo monitoring of tumor distribution of hyaluronan polymeric micelles labeled or loaded with near-infrared fluorescence dye en
dc.contributor.author Achbergerová, Eva
dc.contributor.author Šmejkalová, Daniela
dc.contributor.author Huerta-Angeles, Gloria
dc.contributor.author Souček, Karel
dc.contributor.author Hermannová, Martina
dc.contributor.author Vágnerová, Hana
dc.contributor.author Vícha, Robert
dc.contributor.author Velebný, Vladimír
dc.relation.ispartof Carbohydrate Polymers
dc.identifier.issn 0144-8617 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 198
dc.citation.spage 339
dc.citation.epage 347
dc.type article
dc.language.iso en
dc.publisher Elsevier
dc.identifier.doi 10.1016/j.carbpol.2018.06.082
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0144861718307367
dc.subject Hyaluronan en
dc.subject Polymeric micelles en
dc.subject NIR fluorescence imaging en
dc.subject Tumor detection en
dc.description.abstract Development of delivery systems which allow real-time visual inspection of tumors is critical for effective therapy. Near-infrared (NIR) fluorophores have a great potential for such an application. To overcome NIR dyes short blood circulation time and increase tumor accumulation, a NIR dye, cypate, was associated with oleyl hyaluronan, which can self-assemble into polymeric aggregates. The cypate association with oleyl hyaluronan was performed either by a covalent linkage, or physical entrapment. The two systems were compared for tumor targeting and contrast enhancement using BALB/c mice bearing 4T1 breast cancer tumors. Independently on the way of cypate association, it took more than 24 h from intravenous administration to detect NIR signal in tumors and the tumors were clearly visualized for 2 following weeks without substrate reinjection. Covalently linked cypate generated 2–3 fold stronger fluorescence signal than physically loaded cypate. This study demonstrates the potential of HA matrix to be used as carrier of contrast agents for non-invasive long-term tumor visualization. © 2018 Elsevier Ltd en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1008081
utb.identifier.obdid 43878229
utb.identifier.scopus 2-s2.0-85049036699
utb.identifier.wok 000440785200040
utb.identifier.pubmed 30093008
utb.identifier.coden CAPOD
utb.source j-scopus
dc.date.accessioned 2018-07-27T08:47:42Z
dc.date.available 2018-07-27T08:47:42Z
dc.description.sponsorship MEYS, Ministry of Education, Youth and Science
dc.description.sponsorship Internal Founding Agency of Tomas Bata University in Zlin [IGA/FT/2018/001]; National Program of Sustainability II (MEYS CR) [LQ1605]; program Institute Contipro
utb.contributor.internalauthor Achbergerová, Eva
utb.contributor.internalauthor Vícha, Robert
utb.fulltext.affiliation Eva Achbergerová a,b , Daniela Šmejkalová a,* , Gloria Huerta-Angeles a , Karel Souček c,d,e , Martina Hermannová a , Hana Vágnerová a , Robert Vícha b , Vladimír Velebný a a Contipro a.s., Dolní Dobrouč 401, Dolní Dobrouč, 561 02, Czech Republic b Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01, Zlín, Czech Republic c The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65, Brno, Czech Republic d International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91 Brno, Czech Republic e Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic * Corresponding author. E-mail address: [email protected] (D. Šmejkalová).
utb.fulltext.dates Received 13 March 2018 Received in revised form 11 June 2018 Accepted 18 June 2018 Available online 22 June 2018
utb.fulltext.references Ashitate, Y., Vooght, C. S., Hutteman, M., Oketokoun, R., Choi, H. S., & Frangioni, J. V. (2012). Simultaneous assessment of luminal integrity and vascular perfusion of the gastrointestinal tract using dual-channel near-infrared fluorescence. Molecular Imaging, 11(4), 301–308. Banerji, S., Wright, A. J., Noble, M., Mahoney, D. J., Campbell, I. D., Day, A. J., et al. (2007). Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nature Structural and Molecular Biology, 14(3), 234–239. Barui, A., Khare, R., Dhara, S., Banerjee, P., & Chatterjee, J. (2014). Ex vivo bio-compatibility of honey-alginate fibrous matrix for HaCaT and 3T3 with prime molecular expressions. Journal of Materials Science. Materials in Medicine, 25(12), 2659–2667. Choi, K. Y., Chung, H., Min, K. H., Yoon, H. Y., Kim, K., Park, J. H., et al. (2010). Selfassembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials, 31(1), 106–114. Choi, K. Y., Min, K. H., Na, J. H., Choi, K., Kim, K., Park, J. H., et al. (2009). Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: Synthesis, characterization, and in vivo biodistribution. Journal of Materials Chemistry, 19(24), 4102–4107. Christensen, J., Vonwil, D., & Shastri, V. P. (2015). Non-invasive in vivo imaging and quantification of tumor growth and metastasis in rats using cells expressing far-red fluorescence protein. PLoS ONE, 10(7), e0132725. da Silva, I. L., Montero-Montero, L., Martín-Villar, E., Martin-Pérez, J., Sainz, B., Renart, J., et al. (2017). Reduced expression of the murine HLA-G homolog Qa-2 is associated with malignancy, epithelial-mesenchymal transition and stemness in breast cancer cells. Scientific Reports, 7. Gleysteen, J. P., Newman, J. R., Chhieng, D., Frost, A., Zinn, K. R., & Rosenthal, E. L. (2008). Fluorescent labeled anti-EGFR antibody for identification of regional and distant metastasis in a preclinical xenograft model. Head and Neck, 30(6), 782–789. Hill, T. K., Kelkar, S. S., Wojtynek, N. E., Souchek, J. J., Payne, W. M., Stumpf, K., et al. (2016). Near infrared fluorescent nanoparticles derived from hyaluronic acid improve tumor contrast for image-guided surgery. Theranostics, 6(13), 2314–2328. Huerta-Angeles, G., Bobek, M., Prikopova, E., Smejkalova, D., & Velebny, V. (2014). Novel synthetic method for the preparation of amphiphilic hyaluronan by means of aliphatic aromatic anhydrides. Carbohydrate Polymers, 111, 883–891. Huerta-Angeles, G., Brandejsova, M., Kulhanek, J., Pavlik, V., Smejkalova, D., Vagnerova, H., et al. (2016). Linolenic acid grafted hyaluronan: Process development, structural characterization, biological assessing, and stability studies. Carbohydrate Polymers, 152, 815–824. Kelkar, S. S., Hill, T. K., Marini, F. C., & Mohs, A. M. (2016). Near infrared fluorescent nanoparticles based on hyaluronic acid: Self-assembly, optical properties, and cell interaction. Acta Biomaterialia, 36, 112–121. Liu, Z., & Li, Z. (2014). Molecular imaging in tracking tumor-specific cytotoxic T lymphocytes (CTLs). Theranostics, 4(10), 990–1001. Luker, G. D., & Luker, K. E. (2008). Optical imaging: Current applications and future directions. Journal of Nuclear Medicine, 49(1), 1–4. Meng, Q., Liu, Z., Li, F., Ma, J., Wang, H., Huan, Y., et al. (2015). An HDAC-targeted imaging probe LBH589–Cy5.5 for tumor detection and therapy evaluation. Molecular Pharmaceutics, 12(7), 2469–2476. Misra, S., Hascall, V. C., Markwald, R. R., & Ghatak, S. (2015). Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Frontiers in Immunology, 6. Nimura, H., Narimiya, N., Mitsumori, N., Yamazaki, Y., Yanaga, K., & Urashima, M. (2004). Infrared ray electronic endoscopy combined with indocyanine green injection for detection of sentinel nodes of patients with gastric cancer. British Journal of Surgery, 91(5), 575–579. Pandey, M. S., & Weigel, P. H. (2014). Hyaluronic acid receptor for endocytosis (HARE)- mediated endocytosis of hyaluronan, heparin, dermatan sulfate, and acetylated Low density lipoprotein (AcLDL), but not chondroitin sulfate types A, C, D, or E, activates NF-κB-regulated gene expression. Journal of Biological Chemistry, 289(3), 1756–1767. Peng, H. S., & Chiu, D. T. (2015). Soft fluorescent nanomaterials for biological and biomedical imaging. Chemical Society Reviews, 44(14), 4699–4722. Qin, X.-H., Gruber, P., Markovic, M., Plochberger, B., Klotzsch, E., Stampfl, J., et al. (2014). Enzymatic synthesis of hyaluronic acid vinyl esters for two-photon microfabrication of biocompatible and biodegradable hydrogel constructs. Polymer Chemistry, 5(22), 6523–6533. Smejkalova, D., Nesporova, K., Huerta-Angeles, G., Syrovatka, J., Jirak, D., Galisova, A., et al. (2014). Selective in vitro anticancer effect of superparamagnetic iron oxide nanoparticles loaded in hyaluronan polymeric micelles. Biomacromolecules, 15(11), 4012–4020. Soltesz, E. G., Kim, S., Kim, S. W., Laurence, R. G., De Grand, A. M., Parungo, C. P., et al. (2006). Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Annals of Surgical Oncology, 13(3), 386–396. Tao, K., Fang, M., Alroy, J., & Sahagian, G. G. (2008). Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer, 8(1), 228. Vahrmeijer, A. L., Hutteman, M., van der Vorst, J. R., van de Velde, C., & Frangioni, J. V. (2013). Image-guided cancer surgery using near-infrared fluorescence. Nature Reviews. Clinical Oncology, 10(9), 507–518. Vaquero, J. J., & Kinahan, P. (2015). Positron emission tomography: Current challenges and opportunities for technological advances in clinical and preclinical imaging systems. Annual Review of Biomedical Engineering, 17, 385–414. Vištejnová, L., Dvořakova, J., Hasová, M., Muthný, T., Velebný, V., Souček, K., et al. (2009). The comparison of impedance-based method of cell proliferation monitoring with commonly used metabolic-based techniques. Neuro Endocrinology Letters, 30(Suppl. 1), 121–127. Wang, W., Cameron, A. G., & Ke, S. (2012). Developing fluorescent hyaluronan analogs for hyaluronan studies. Molecules, 17(2), 1520–1534. Xia, M., Huang, R., Witt, K. L., Southall, N., Fostel, J., Cho, M. H., et al. (2008). Compound cytotoxicity profiling using quantitative high-throughput screening. Environmental Health Perspectives, 116(3), 284–291. Yancovitz, M., Litterman, A., Yoon, J., Ng, E., Shapiro, R. L., Berman, R. S., et al. (2012). Intra- and inter-tumor heterogeneity of BRAF(V600E))mutations in primary and metastatic melanoma. PLoS ONE, 7(1), e29336. Ye, Y., Bloch, S., Kao, J., & Achilefu, S. (2005). Multivalent carbocyanine molecular probes: Synthesis and applications. Bioconjugate Chemistry, 16(1), 51–61. Zhang, Y., Ang, C. Y., & Zhao, Y. (2015). Polymeric nanocarriers incorporating nearinfrared absorbing agents for potent photothermal therapy of cancer. Polymer Journal, 48, 589.
utb.fulltext.sponsorship This work was financially supported by the Internal Founding Agency of Tomas Bata University in Zlín [Project No. IGA/FT/2018/001], by project LQ1605 from the National Program of Sustainability II (MEYS CR), and the program Institute Contipro. Our thanks go also to Pavla Řezníčková and Dr. Nina Charvátová for maintenance of animal facility.
utb.wos.affiliation [Achbergerova, Eva; Smejkalova, Daniela; Huerta-Angeles, Gloria; Hermannova, Martina; Vagnerova, Hana; Velebny, Vladimir] Contipro As, Dolni Dobrouc 401, Dolni Dobrouc 56102, Czech Republic; [Achbergerova, Eva; Vicha, Robert] Tomas Bata Univ Zlin, Fac Technol, Dept Chem, Vavreckova 275, Zlin 76001, Czech Republic; [Soucek, Karel] Czech Acad Sci, Inst Biophys, Kralovopolska 135, Brno 61265, Czech Republic; [Soucek, Karel] St Annes Univ Hosp, Int Clin Res Ctr, Pekarska 53, Brno 65691, Czech Republic; [Soucek, Karel] Masaryk Univ, Fac Sci, Dept Expt Biol, Kamenice 735-5, Brno 62500, Czech Republic
utb.scopus.affiliation Contipro a.s., Dolní Dobrouč 401, Dolní Dobrouč, Czech Republic; Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, Zlín, Czech Republic; The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 735/5, Brno, Czech Republic
utb.fulltext.projects IGA/FT/2018/001
utb.fulltext.projects LQ1605
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam