Publikace UTB
Repozitář publikační činnosti UTB

The biocompatibility of polyaniline and polypyrrole: A comparative study of their cytotoxicity, embryotoxicity and impurity profile

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title The biocompatibility of polyaniline and polypyrrole: A comparative study of their cytotoxicity, embryotoxicity and impurity profile en
dc.contributor.author Humpolíček, Petr
dc.contributor.author Kašpárková, Věra
dc.contributor.author Pacherník, Jiří
dc.contributor.author Stejskal, Jaroslav
dc.contributor.author Bober, Patrycja
dc.contributor.author Capáková, Zdenka
dc.contributor.author Radaszkiewicz, Katarzyna Anna
dc.contributor.author Junkar, Ita
dc.contributor.author Lehocký, Marián
dc.relation.ispartof Materials Science and Engineering C
dc.identifier.issn 0928-4931 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 91
dc.citation.spage 303
dc.citation.epage 310
dc.type article
dc.language.iso en
dc.publisher Elsevier
dc.identifier.doi 10.1016/j.msec.2018.05.037
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0928493117344624
dc.subject Biocompatibility en
dc.subject Polyaniline en
dc.subject Polypyrrole en
dc.description.abstract Conducting polymers (CP), namely polyaniline (PANI) and polypyrrole (PPy), are promising materials applicable for the use as biointerfaces as they intrinsically combine electronic and ionic conductivity. Although a number of works have employed PANI or PPy in the preparation of copolymers, composites, and blends with other polymers, there is no systematic study dealing with the comparison of their fundamental biological properties. The present study, therefore, compares the biocompatibility of PANI and PPy in terms of cytotoxicity (using NIH/3T3 fibroblasts and embryonic stem cells) and embryotoxicity (their impact on erythropoiesis and cardiomyogenesis within embryonic bodies). The novelty of the study lies not only in the fact that embryotoxicity is presented for the first time for both studied polymers, but also in the elimination of inter-laboratory variations within the testing, such variation making the comparison of previously published works difficult. The results clearly show that there is a bigger difference between the biocompatibility of the respective polymers in their salt and base forms than between PANI and PPy as such. PANI and PPy can, therefore, be similarly applied in biomedicine when solely their biological properties are considered. Impurity content detected by mass spectroscopy is presented. These results can change the generally accepted opinion of the scientific community on better biocompatibility of PPy in comparison with PANI. © 2018 Elsevier B.V. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1007952
utb.identifier.obdid 43878240
utb.identifier.scopus 2-s2.0-85047270560
utb.identifier.wok 000442192000031
utb.identifier.pubmed 30033259
utb.source j-scopus
dc.date.accessioned 2018-07-27T08:47:35Z
dc.date.available 2018-07-27T08:47:35Z
dc.description.sponsorship LO1504, NPU, Northwestern Polytechnical University; 17-05095S, GACR, Grantová Agentura České Republiky; MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy
dc.description.sponsorship Czech Science Foundation [17-05095S]; Ministry of Education, Youth and Sports of the Czech Republic - Program NPU I [LO1504]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Humpolíček, Petr
utb.contributor.internalauthor Kašpárková, Věra
utb.contributor.internalauthor Capáková, Zdenka
utb.contributor.internalauthor Lehocký, Marián
utb.fulltext.affiliation Petr Humpolíček a,* , Věra Kašpárková a , Jiří Pacherník b , Jaroslav Stejskal c , Patrycja Bober c , Zdenka Capáková a , Katarzyna Anna Radaszkiewicz b , Ita Junkar d , Marián Lehocký a a Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic b Institute of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic c Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic d Josef Stefan Institute, Jamova 39, Ljubljana 1000, Slovenia * Corresponding author. E-mail address: [email protected] (P. Humpolíček).
utb.fulltext.dates Received 14 November 2017 Received in revised form 9 May 2018 Accepted 10 May 2018 Available online 16 May 2018
utb.fulltext.references [1] J.A. Genovese, C. Spadaccio, J. Langer, J. Habe, J. Jackson, A.N. Patel, Electrostimulation induces cardiomyocyte predifferentiation of fibroblasts, Biochem. Biophys. Res. Commun. 370 (2008) 450–455. [2] C.D. McCaig, A.M. Rajnicek, B. Song, M. Zhao, Controlling cell behavior electrically: current views and future potential, Physiol. Rev. 85 (2005) 943–978. [3] L.C. Kloth, Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials, Int. J. Low. Extrem. Wounds 4 (2005) 23–44. [4] B. Weng, J. Diao, Q. Xu, Y. Liu, C. Li, A. Ding, J. Chen, Bio-interface of conducting polymer-based materials for neuroregeneration, Adv. Mater. Interfaces 2 (2015) (1500059). [5] J. Stejskal, M. Omastová, S. Fedorova, J. Prokeš, M. Trchová, Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study, Polymer 44 (2003) 1353–1358. [6] J. Kim, S.D. Deshpande, S. Yun, Q. Li, A comparative study of conductive polypyrrole and polyaniline coatings on electro-active papers, Polym. J. 38 (2006) 659–668. [7] N.K. Guimard, N. Gomez, C.E. Schmidt, Conducting polymers in biomedical engineering, Prog. Polym. Sci. 32 (2007) 876–921. [8] A. Bendrea, L. Cianga, I. Cianga, Progress in the field of conducting polymers for tissue engineering applications, J. Biomater. Appl. 26 (2011) 3–84. [9] T.H. Qazi, R. Rai, A.R. Boccaccini, Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review, Biomaterials 35 (2014) 9068–9086. [10] X. Wang, X. Gu, C. Yuan, S. Chen, P. Zhang, T. Zhang, J. Yao, F. Chen, G. Chen, Evaluation of biocompatibility of polypyrrole in vitro and in vivo, J. Biomed. Mater. Res. A 68 (2004) 411–422. [11] P. Humpolíček, V. Kašpárková, P. Sáha, J. Stejskal, Biocompatibility of polyaniline, Synth. Met. 162 (2012) 722–727. [12] Z. Kuceková, P. Humpolíček, V. Kašpárková, T. Perecko, M. Lehocký, I. Hauerlandová, P. Sáha, J. Stejskal, Colloidal polyaniline dispersions: antibacterial activity, cytotoxicity and neutrophil oxidative burst, Colloids Surf. B Biointerfaces 116 (2014) 411–417. [13] P. Humpolíček, K.A. Radaszkiewicz, V. Kašpárková, J. Stejskal, M. Trchová, Z. Kuceková, H. Vicarova, J. Pacherník, M. Lehocký, A. Minařík, Stem cell differentiation on conducting polyaniline, RSC Adv. 5 (2015) 68796–68805. [14] P. Humpolíček, Z. Kuceková, V. Kašpárková, J. Pelková, M. Modic, I. Junkar, M. Trchová, P. Bober, J. Stejskal, M. Lehocký, Blood coagulation and platelet adhesion on polyaniline films, Colloids Surf. B Biointerfaces 133 (2015) 278–285. [15] A. Ramanaviciene, A. Kausaite, S. Tautkus, A. Ramanavicius, Biocompatibility of polypyrrole particles: an in-vivo study in mice, J. Pharm. Pharmacol. 59 (2007) 311–315. [16] J. Stejskal, R.G. Gilbert, Polyaniline. Preparation of a conducting polymer (IUPAC technical report), Pure Appl. Chem. 74 (2002) 857–867. [17] A. Nagy, J. Rossant, R. Nagy, W. Abramow-Newerly, J.C. Roder, Derivation of completely cell culture-derived mice from early-passage embryonic stem cells, Proc. Natl. Acad. Sci. U. S. A. 90 (1993) 8424–8428. [18] R. Konopka, M. Hýzdalová, L. Kubala, J. Pacherník, New luminescence-based approach to measurement of luciferase gene expression reporter activity and adenosine triphosphate-based determination of cell viability, Folia Biol. 56 (2010) 66–71. [19] C. Della Pina, Z. Capáková, A. Sironi, P. Humpolíček, P. Sáha, E. Falletta, On thecytotoxicity of poly(4-aminodiphenylaniline) powders: effect of acid dopant type and sample posttreatment, Int. J. Polym. Mater. Polym. Biomater. 66 (2017) 132–138. [20] K.A. Radaszkiewicz, D. Sýkorová, L. Binó, J. Kudová, M. Bébarová, J. Procházková, H. Kotasová, L. Kubala, J. Pacherník, The acceleration of cardiomyogenesis in embryonic stem cells in vitro by serum depletion does not increase the number of developed cardiomyocytes, PLoS One 12 (2017) e0173140. [21] S.P. Armes, Optimum reaction conditions for the polymerization of pyrrole by iron (III) chloride in aqueous solution, Synth. Met. 20 (1987) 365–371. [22] S. Machida, S. Miyata, A. Techagumpuch, Chemical synthesis of highly electrically conductive polypyrrole, Synth. Met. 31 (1989) 311–318. [23] E. Jabbari, D. Kim, L.P. Lee, Handbook of Biomimetics and Bioinspiration: Biologically-Driven Engineering of Materials, Processes, Devices, and Systems, World Scientific, 2014. [24] J. Jang, H. Yoon, Multigram-scale fabrication of monodisperse conducting polymer and magnetic carbon nanoparticles, Small 1 (2005) 1195–1199. [25] J. Hong, H. Yoon, J. Jang, Kinetic study of the formation of polypyrrole nanoparticles in water-soluble polymer/metal cation systems: a light-scattering analysis, Small 6 (2010) 679–686. [26] S. Kim, W. Oh, Y.S. Jeong, J. Hong, B. Cho, J. Hahn, J. Jang, Cytotoxicity of, and innate immune response to, size-controlled polypyrrole nanoparticles in mammalian cells, Biomaterials 32 (2011) 2342–2350. [27] A. Ramtin, A. Seyfoddin, F. Coutinho, G. Waterhouse, I. Rupenthal, D. Svirskis, Cytotoxicity considerations and electrically tunable release of dexamethasone from polypyrrole for the treatment of back-of-the-eye conditions, Drug Deliv. Transl. Res. 6 (2016) 793–799. [28] J. Stejskal, M. Hajná, V. Kašpárková, P. Humpolíček, A. Zhigunov, M. Trchová, Purification of a conducting polymer, polyaniline, for biomedical applications, Synth. Met. 195 (2014) 286–293. [29] V. Kašpárková, P. Humpolíček, J. Stejskal, J. Kopecká, Z. Kuceková, R. Moučka, Conductivity, impurity profile, and cytotoxicity of solvent-extracted polyaniline, Polym. Adv. Technol. 27 (2016) 156–161. [30] Z. Ding, T. Sanchez, A. Labouriau, S. Iyer, T. Larson, R. Currier, Y. Zhao, D. Yang, Characterization of reaction intermediate aggregates in aniline oxidative polymerization at low proton concentration, J. Phys. Chem. B 114 (2010) 10337–10346. [31] J. Křiž, L. Starovoytova, M. Trchová, E.N. Konyushenko, J. Stejskal, NMR investigation of aniline oligomers produced in the early stages of oxidative polymerization of aniline, J. Phys. Chem. B 113 (2009) 6666–6673. [32] J. Stejskal, M. Trchová, Aniline oligomers versus polyaniline, Polym. Int. 61 (2012) 240–251.
utb.fulltext.sponsorship This work was supported by the Czech Science Foundation (17-05095S) and by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504). Authors thank to Pavel Kucharczyk for help with LC-MS analysis.
utb.wos.affiliation [Humpolicek, Petr; Kasparkova, Vera; Capakova, Zdenka; Lehocky, Marian] Tomas Bata Univ Zlin, Ctr Polymer Syst, Zlin 76001, Czech Republic; [Pachernik, Jiri; Radaszkiewicz, Katarzyna Anna] Masaryk Univ, Fac Sci, Inst Expt Biol, Brno 62500, Czech Republic; [Stejskal, Jaroslav; Bober, Patrycja] Acad Sci Czech Republ, Inst Macromol Chem, Prague 16206 6, Czech Republic; [Junkar, Ita] Josef Stefan Inst, Jamova 39, Ljubljana 1000, Slovenia
utb.scopus.affiliation Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic; Josef Stefan Institute, Jamova 39, Ljubljana, Slovenia
utb.fulltext.projects 17-05095S
utb.fulltext.projects LO1504
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International