Publikace UTB
Repozitář publikační činnosti UTB

Enhancement of the antioxidant activity and stability of β-carotene using amphiphilic chitosan/nucleic acid polyplexes

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Enhancement of the antioxidant activity and stability of β-carotene using amphiphilic chitosan/nucleic acid polyplexes en
dc.contributor.author Di Martino, Antonio
dc.contributor.author Trusova, Marina E.
dc.contributor.author Postnikov, Pavel S.
dc.contributor.author Sedlařík, Vladimír
dc.relation.ispartof International Journal of Biological Macromolecules
dc.identifier.issn 0141-8130 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 117
dc.citation.spage 773
dc.citation.epage 780
dc.type article
dc.language.iso en
dc.publisher Elsevier
dc.identifier.doi 10.1016/j.ijbiomac.2018.06.006
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0141813018312789
dc.subject Polyplexes en
dc.subject Antioxidants en
dc.subject beta-carotene en
dc.subject Chitosan en
dc.subject Polylactic acid en
dc.subject Deoxyribonucleic acid en
dc.description.abstract β-carotene is a natural compound with significant antioxidant activity. However, its poor solubility in water and low stability reduce its potential application. Innovative polyplexes based on the combination of amphiphilic chitosan assembled with DNA have been developed using a solvent-free, simple and low-cost method with the aim to load, retain and enhance the antioxidant capability of β-carotene. The polyplexes, with dimension about 100 nm, and excellent stability, were able to hold up to 400 μg of β-carotene per mg of the carrier, with minimal loss till two weeks. The antioxidant activity was significantly enhanced after loading, as demonstrated using two well known methods. Cytotoxicity assay confirmed the not toxicity of the system. The results suggest the polyplexes as an excellent candidate to develop formulation able to preserve and enhance the peculiarities of compounds which are used mainly in food, cosmetic and pharmaceutic but with still some limitations. © 2018 en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1007951
utb.identifier.obdid 43878241
utb.identifier.scopus 2-s2.0-85048001660
utb.identifier.wok 000442057700089
utb.identifier.pubmed 29874555
utb.identifier.coden IJBMD
utb.source j-scopus
dc.date.accessioned 2018-07-27T08:47:35Z
dc.date.available 2018-07-27T08:47:35Z
dc.description.sponsorship VIU-RSCABS-89/2018, TPU, Tomsk Polytechnic University; NPU I LO1504
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic [NPU I LO1504]; Tomsk Polytechnic University [VIU-RSCABS-89/2018]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Di Martino, Antonio
utb.contributor.internalauthor Sedlařík, Vladimír
utb.fulltext.affiliation Antonio Di Martino a,b, * , Marina E. Trusova b , Pavel S. Postnikov b , Vladimir Sedlarik a a Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr.Tomas Bati, 5678, 76001 Zlin, Czech Republic b Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russian Federation * Corresponding author. E-mail address: [email protected] (A. Di Martino).
utb.fulltext.dates Received 16 March 2018 Received in revised form 1 June 2018 Accepted 2 June 2018 Available online 03 June 2018
utb.fulltext.references [1] A. Jain, D. Thakur, G. Ghoshal, O.P. Katare, U.S. Shivhare, Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth, Int. J. Biol. Macromol. 87 (2016) 101–113. [2] H. Chen, Q. Zhong, Thermal and UV stability of β-carotene dissolved in peppermint oil microemulsified by sunflower lecithin and Tween 20 blend, Food Chem. 174 (2015) 630–636. [3] D. Xu, X. Wang, J. Jiang, F. Yuan, Y. Gao, Impact of whey protein–Beet pectin conjugation on the physicochemical stability of β-carotene emulsions, Food Hydrocoll. 28 (2) (2012) 258–266 (Helgason et al. 2009). [4] H. Naz, P. Khan, M. Tarique, S. Rahman, A. Meena, S. Ahamad, M.I. Hassan, Binding studies and biological evaluation of β-carotene as a potential inhibitor of human calcium/calmodulin-dependent protein kinase IV, Int. J. Biol. Macromol. 96 (2017) 161–170. [5] P. Shao, Q. Qiu, J. Xiao, Y. Zhu, P. Sun, Chemical stability and in vitro release properties of β-carotene in emulsions stabilized by Ulva fasciata polysaccharide, Int. J. Biol. Macromol. 102 (2017) 225–231. [6] C.S. Boon, D.J. Mcclements, J. Weiss, E.A. Decker, Factors influencing the chemical stability of carotenoids in foods, Crit. Rev. Food Sci. Nutr. 50 (6) (2010) 515–532. [7] C. Bustos-Garza, J. Yáñez-Fernández, B.E. Barragán-Huerta, Thermal and pH stability of spray-dried encapsulated astaxanthin oleoresin from Haematococcus pluvialis using several encapsulation wall materials, Food Res. Int. 54 (1) (2013) 641–649. [8] J. Yi, T.I. Lam, W. Yokoyama, L.W. Cheng, F. Zhong, Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells, Food Hydrocoll. 43 (2015) 31–40. [9] T.C. Brito-Oliveira, C.V. Molina, F.M. Netto, S.C. Pinho, Encapsulation of beta-carotene in lipid microparticles stabilized with hydrolyzed soy protein isolate: production parameters, alph tocopherol coencapsulation and stability under stress conditions, J. Food Sci. 82 (3) (2017) 659–669. [10] R.C.F. Cheung, T.B. Ng, J.H. Wong, W.Y. Chan, Chitosan: an update on potential biomedical and pharmaceutical applications, Mar. Drugs 13 (8) (2015) 5156–5186. [11] H. Chi, Y. Gu, T. Xu, F. Cao, Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery, Int. J. Nanomedicine 12 (2017) 1607. [12] Z.W. Jing, Z.W. Ma, C. Li, Y.Y. Jia, M. Luo, X.X. Ma, B.L. Zhang, Chitosan cross-linked with poly (ethylene glycol) dialdehyde via reductive amination as effective controlled release carriers for oral protein drug delivery, Bioorg. Med. Chem. Lett. 27 (4) (2017) 1003–1006 (Du et al. 2009). [13] M.C. Bonferoni, G. Sandri, E. Dellera, S. Rossi, F. Ferrari, M. Mori, C. Caramella, Ionic polymeric micelles based on chitosan and fatty acids and intended for wound healing. Comparison of linoleic and oleic acid, Eur. J. Pharm. Biopharm. 87 (1) (2014) 101–106. [14] F. Zhang, J. Fei, M. Sun, Q. Ping, Heparin modification enhances the delivery and tumor targeting of paclitaxel-loaded N-octyl-N-trimethyl chitosan micelles, Int. J. Pharm. 511 (1) (2016) 390–402. [15] I.P.D. Picola, Q. Shi, J.C. Fernandes, M.S. Petrônio, A.M.F. Lima, V.A. de Oliveira Tiera, M.J. Tiera, Chitosan derivatives for gene transfer: effect of phosphorylcholine and diethylaminoethyl grafts on the in vitro transfection efficiency, J. Biomater. Sci. Polym. Ed. 27 (16) (2016) 1611–1630. [16] W. Ge, D. Li, M. Chen, X. Wang, S. Liu, R. Sun, Characterization and antioxidant activity of β-carotene loaded chitosan-graft-poly (lactide) nanomicelles, Carbohydr. Polym. 117 (2015) 169–176. [17] A. Di Martino, P. Kucharczyk, J. Zednik, V. Sedlarik, Chitosan grafted low molecular weight polylactic acid for protein encapsulation and burst effect reduction, Int. J. Pharm. 496 (2) (2015) 912–921. [18] D. Jeevitha, K. Amarnath, Chitosan/PLA nanoparticles as a novel carrier for the delivery of anthraquinone: synthesis, characterization and in vitro cytotoxicity evaluation, Colloids Surf. B: Biointerfaces 101 (2013) 126–134. [19] A. Di Martino, A. Pavelková, S. Maciulyte, S. Budriene, V. Sedlarik, Polysaccharide-based nanocomplexes for co-encapsulation and controlled release of 5-fluorouracil and temozolomide, Eur. J. Pharm. Sci. 92 (2016) 276–286. [20] P. Mukhopadhyay, S. Chakraborty, S. Bhattacharya, R. Mishra, P.P. Kundu, pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery, Int. J. Biol. Macromol. 72 (2015) 640–648. [21] W. Chaiyasan, S. Praputbut, U.B. Kompella, S.P. Srinivas, W. Tiyaboonchai, Penetration of mucoadhesive chitosan-dextran sulfate nanoparticles into the porcine cornea, Colloids Surf. B: Biointerfaces 149 (2017) 288–296. [22] W. Chaiyasan, S.P. Srinivas, W. Tiyaboonchai, Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery, Mol. Vis. 21 (2015) 1224. [23] M.G. Devi, S. Dutta, A.T. Al Hinai, S. Feroz, Studies on encapsulation of rifampicin and its release from chitosan-dextran sulfate capsules, Korean J. Chem. Eng. 32 (1) (2015) 118–124. [24] Z.W. Jing, Y.Y. Jia, N. Wan, M. Luo, M.L. Huan, T.B. Kang, ... B.L. Zhang, Design and evaluation of novel pH-sensitive ureido-conjugated chitosan/TPP nanoparticles targeted to helicobacter pylori, Biomaterials 84 (2016) 276–285. [25] J. Carb Wu, Y. Wang, H. Yang, X. Liu, Z. Lu, Preparation and biological activity studies of resveratrol loaded ionically cross-linked chitosan-TPP nanoparticles, Carbohydr. Polym. 175 (2017) 170–177. [26] M.K. Danish, G. Vozza, H.J. Byrne, J.M. Frias, S.M. Ryan, Comparative study of the structural and physicochemical properties of two food derived antihypertensive tri-peptides, isoleucine-proline-proline and leucine-lysine-proline encapsulated into a chitosan based nanoparticle system, Innovative Food Sci. Emerg. Technol. 44 (2017) 139–148. [27] Y.O. Jeon, J.S. Lee, H.G. Lee, Improving solubility, stability, and cellular uptake of resveratrol by nanoencapsulation with chitosan and γ-poly (glutamic acid), Colloids Surf. B: Biointerfaces 147 (2016) 224–233. [28] Q. Wang, Y. Zhao, L. Guan, Y. Zhang, Q. Dang, P. Dong, X. Liang, Preparation of astaxanthin-loaded DNA/chitosan nanoparticles for improved cellular uptake and antioxidation capability, Food Chem. 227 (2017) 9–15. [29] A. Di Martino, P. Kucharczyk, Z. Capakova, P. Humpolicek, V. Sedlarik, Enhancement of temozolomide stability by loading in chitosan-carboxylated polylactide-based nanoparticles, J. Nanopart. Res. 19 (2) (2017) 71. [30] S.B. Kedare, R.P. Singh, Genesis and development of DPPH method of antioxidant assay, J. Food Sci. Technol. 48 (4) (2011) 412–422. [31] F. Abderrahim, S.M. Arribas, M.C. Gonzalez, L. Condezo-Hoyos, Rapid high-throughput assay to assess scavenging capacity index using DPPH, Food Chem. 141 (2) (2013) 788–794. [32] I.F. Benzie, J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay, Anal. Biochem. 239 (1) (1996) 70–76. [33] A. Gliszczyńska-Świgło, Antioxidant activity of water soluble vitamins in the TEAC (trolox equivalent antioxidant capacity) and the FRAP (ferric reducing antioxidant power) assays, Food Chem. 96 (1) (2006) 131–136. [34] D.S. Lee, J.Y. Woo, C.B. Ahn, J.Y. Je, Chitosan–hydroxycinnamic acid conjugates: preparation, antioxidant and antimicrobial activity, Food Chem. 148 (2014) 97–104. [35] A. Di Martino, P. Kucharczyk, Z. Capakova, P. Humpolicek, V. Sedlarik, Enhancement of temozolomide stability by loading in chitosan-carboxylated polylactide-based nanoparticles, J. Nanopart. Res. 19 (2) (2017) 71. [36] A. Di Martino, O.A. Guselnikova, M.E. Trusova, P.S. Postnikov, V. Sedlarik, Organic-inorganic hybrid nanoparticles controlled delivery system for anticancer drugs, Int. J. Pharm. 526 (1) (2017) 380–390. [37] K. Kettler, K. Veltman, D. van de Meent, A. van Wezel, A.J. Hendriks, Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type, Environ. Toxicol. Chem. 33 (3) (2014) 481–492. [38] L. Mueller, V. Boehm, Antioxidant activity of β-carotene compounds in different in vitro assays, Molecules 16 (2) (2011) 1055–1069. [39] S.B. Schreiber, J.J. Bozell, D.G. Hayes, S. Zivanovic, Introduction of primary antioxidant activity to chitosan for application as a multifunctional food packaging material, Food Hydrocoll. 33 (2) (2013) 207–214. [40] A.B. Engin, D. Nikitovic, M. Neagu, P. Henrich-Noack, A.O. Docea, M.I. Shtilman, A.M. Tsatsakis, Mechanistic understanding of nanoparticles' interactions with extracellular matrix: the cell and immune system, Part. Fibre Toxicol. 14 (1) (2017) 22.
utb.fulltext.sponsorship This work was funded by the Ministry of Education, Youth and Sports of the Czech Republic (grant no. NPU I LO1504) and Tomsk Polytechnic University (project VIU-RSCABS-89/2018).
utb.wos.affiliation [Di Martino, Antonio; Sedlarik, Vladimir] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Tr Tomas Bati 5678, Zlin 76001, Czech Republic; [Di Martino, Antonio; Trusova, Marina E.; Postnikov, Pavel S.] Tomsk Polytech Univ, Res Sch Chem & Appl Biomed Sci, Lenin Av 30, Tomsk 634050, Russia
utb.scopus.affiliation Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr.Tomas Bati, 5678, Zlin, Czech Republic; Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Av. 30, Tomsk, Russian Federation
utb.fulltext.projects VIU-RSCABS-89/2018
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam