Publikace UTB
Repozitář publikační činnosti UTB

Cucurbit[n]urils-related Multitopic Supramolecular Components: Design, Properties, and Perspectives

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Cucurbit[n]urils-related Multitopic Supramolecular Components: Design, Properties, and Perspectives en
dc.contributor.author Vícha, Robert
dc.contributor.author Jelínková, Kristýna
dc.contributor.author Rouchal, Michal
dc.relation.ispartof Israel Journal of Chemistry
dc.identifier.issn 0021-2148 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 58
utb.relation.issue 3
dc.citation.spage 215
dc.citation.epage 224
dc.event.title Wiley-VCH Verlag
dc.type review
dc.language.iso en
dc.publisher Wiley-VCH Verlag
dc.identifier.doi 10.1002/ijch.201700094
dc.relation.uri https://onlinelibrary.wiley.com/doi/full/10.1002/ijch.201700094
dc.subject host-guest systems en
dc.subject rotaxanes en
dc.subject multitopic guests en
dc.subject cucurbit[n]uril en
dc.subject cyclodextrin en
dc.description.abstract Cucurbit[n]urils (CBns) are an intriguing family of macrocyclic hosts whose chemistry has undergone rapid developments in recent decades. The initial interest in the synthesis, modifications and binding properties has shifted to areas focused on applications in drug storage, delivery, and release, external-stimuli responsive devices, and molecular nano-reactors. Since CBns are fruitfully complemented by cyclodextrins (CDs) in such systems, guest molecules that contain several binding sites are needed. These multitopic guests provide not only a scaffold for holding CBns and CDs together in appropriate arrangements but also allow for manipulation with supramolecular aggregates, e. g., reorganization or release of macrocycles. In this review, we summarize recent studies related to the design of multitopic guests. Binding motifs properties, the role of attractive or repulsive lateral interactions, the competition-compensation effect, and rotaxane versus pseudorotaxane manner are discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007918
utb.identifier.obdid 43878966
utb.identifier.scopus 2-s2.0-85033799741
utb.identifier.wok 000430466900004
utb.identifier.coden ISJCA
utb.source j-scopus
dc.date.accessioned 2018-05-18T15:12:08Z
dc.date.available 2018-05-18T15:12:08Z
dc.description.sponsorship IGA/FT/2017/001
dc.description.sponsorship Internal Funding Agency of Tomas Bata University in Zlin [IGA/FT/2017/001]
utb.contributor.internalauthor Vícha, Robert
utb.contributor.internalauthor Jelínková, Kristýna
utb.contributor.internalauthor Rouchal, Michal
utb.fulltext.affiliation Robert Vícha,* [a] Kristýna Jelínková, [a] and Michal Rouchal [a] [a] Dr. R. Vícha, K. Jelínková, Dr. M. Rouchal Department of Chemistry Tomas Bata University in Zlín, Faculty of Technology Vavrečkova 275, 760 01 Zlín, Czech Republic E-mail: [email protected]
utb.fulltext.dates Received: August 31, 2017 Accepted: October 24, 2017 Published online on November 14, 2017
utb.fulltext.references [1] D.-S. Guo, V. D. Uzunova, K. I. Assaf, A. I. Lazar, Y. Liu, W. M. Nau, Supramol. Chem. 2016, 28, 384–395. [2] a) G. Crini, Chem. Rev. 2014, 114, 10940–10975;b) E. M. M. Del Valle, Process Biochem. 2004, 39, 1033–1046. [3] a) W. M. Nau, M. Florea, K. I. Assaf, Isr. J. Chem. 2011, 51, 559–577;b) K. I. Assaf, W. M. Nau, Chem. Soc. Rev. 2015, 44, 394–418. [4] a) Y. Yuan, M. F. Tam, V. Simplaceanu, C. Ho, Chem. Rev. 2015, 115, 1702–1724;b) T. Yonetani, K. Kanaori, Biochim. Biophys. Acta 2013, 1834, 1873–1884. [5] L. K. S. von Krbek, C. A. Schalley, P. Thordarson, Chem. Soc. Rev. 2017, 46, 2622–2637. [6] Z. Yan, Q. Huang, W. Liang, X. Yu, D. Zhou, W. Wu, J. J. Chruma, C. Yang, Org. Lett. 2017, 19, 898–901. [7] a) G. Gonzalez-Gaitano, J. R. Isasi, I. Velaz, A. Zornoza, Curr. Pharm. Design 2017, 23, 411–432;b) J. Wang, Z. Qiu, Y. Wang, L. Li, X. Guo, D.-T. Pham, S. F. Lincoln, R. K. Prud’homme, Beilstein J. Org. Chem. 2016, 12, 50–72;c) A. Harada, Y. Takashima, M. Nakahata, Acc. Chem. Res. 2014, 47, 2128–2140. [8] a) L. Gilberg, M. S. A. Khan, M. Enderesova, V. Sindelar, Org. Lett. 2014, 16, 2446–2449;b) N. Zhao, G. O. Lloyd, O. A. Scherman, Chem. Commun. 2012, 48, 3070–3072;c) L. P. Cao, L. Isaacs, Org. Lett. 2012, 14, 3072–3075;d) B. Vinciguerra, L. P. Cao, J. R. Cannon, P. Y. Zavalij, C. Fenselau, L. Isaacs, J. Am. Chem. Soc. 2012, 134, 13133–13140;e) M. M. Ayhan, H. Karoui, M. Hardy, A. Rockenbauer, L. Charles, R. Rosas, K. Udachin, P. Tordo, D. Bardelang, O. Ouari, J. Am. Chem. Soc. 2015, 137, 10238–10245;f) M. M. Ayhan, H. Karoui, M. Hardy, A. Rockenbauer, L. Charles, R. Rosas, K. Udachin, P. Tordo, D. Bardelang, O. Ouari, J. Am. Chem. Soc. 2016, 138, 2060–2060. [9] a) M. Zhang, L. Cao, L. Isaacs, Chem. Commun. 2014, 50, 14756–14759;b) J. B. Wittenberg, P. Y. Zavalij, L. Isaacs, Angew. Chem. 2013, 125, 3778–3782; Angew. Chem. Int. Ed. 2013, 52, 3690–3694. [10] W.-H. Huang, S. Liu, P. Y. Zavalij, L. Isaacs, J. Am. Chem. Soc. 2006, 128, 14744–14745. [11] J. B. Wittenberg, M. G. Costales, P. Y. Zavalij, L. Isaacs, Chem. Commun. 2011, 47, 9420–9422. [12] K. M. Park, J. H. Roh, G. Sung, J. Murray, K. Kim, Chem. Asian J. 2017, 12, 1461–1464. [13] a) X.-J. Cheng, L.-L Liang, K. Chen, N.-N. Ji, X. Xiao, J.-X. Zhang, Y.-Q. Zhang, S.-F. Xue, Q.-J. Zhu, X.-L. Ni, Z. Tao, Angew. Chem. 2013, 125, 7393–7396; Angew. Chem. Int. Ed. 2013, 52, 7252–7255;b) Q. Li, S.-C. Qiu, J. Zhang, K. Chen, Y. Huang, X. Xiao, Y. Zhang, F. Li, Y.-Q. Zhang, S.-F. Xue, Q.-J. Zhu, Z. Tao, L. F. Lindoy, G. Wei, Org. Lett. 2016, 18, 4020–4023;c) S.-C. Qiu, K. Chen, Y. Wang, Z.-Y- Hua, F. Li, Y. Huang, Z. Tao, Y.-J. Zhang, G. Wei, Inorg. Chem. Commun. 2017, 10.1016/j.inoche.2017.09.024. [14] H. Ikeda, S. Nishikawa, Y. Yamamoto, A. Ueno, J. Mol. Cat. A 2010, 328, 1–7. [15] L. Cera, C. A. Schalley, Chem. Sci. 2014, 5, 2560–2567. [16] J. Tian, L. Zhang, H. Wang, D.-W. Zhang, Z.-T. Li, Supramol. Chem. 2016, 28, 849–856. [17] S. Tan, K. Ladewig, Q. Fu, A. Blencowe, G. G. Qiao, Macromol. Rapid. Commun. 2014, 35, 1166–1184. [18] T. Fu, Z. Li, Z. Zhang, X. Zhang, F. Wang, Macromolecules 2017, 50, 7517–7525. [19] S. Dong, B. Zheng, F. Wang, F. Huang, Acc. Chem. Res. 2014, 47, 1982–1994. [20] L. Zhu, M. Zhu, Y. Zhao, ChemPlusChem 2017, 82, 30–41. [21] a) S. Moghaddam, C. Yang, M. Rekharsky, Y. H. Ko, K. Kim, Y. Inoue, M. K. Gilson, J. Am. Chem. Soc. 2011, 133, 3570– 3581;b) S. Liu, C. Ruspic, P. Mukhopadhyay, S. Chakrabarti, P. Y. Zavalij, L. Isaacs, J. Am. Chem. Soc. 2005, 127, 15959–15967. [22] a) L. Cao, M. Šekutor, P. Y. Zavalij, K. Mlinarić-Majerski, R. Glaser, L. Isaacs, Angew. Chem. 2014, 126, 1006–1011; Angew. Chem. Int. Ed. 2014, 53, 988–993;b) D. Sigwalt, M. Šekutor, L. Cao, P. Y. Zavalij, J. Hostaš, H. Ajani, P. Hobza, K. Mlinarić-Majerski, R. Glaser, L. Isaacs, J. Am. Chem. Soc. 2017, 139, 3249–3258. [23] M. V. Rekharsky, T. Mori, C. Yang, H. K. Ko, N. Selvapalam, H. Kim, D. Sobransingh, A. E. Kaifer, S. Liu, L. Isaacs, W. Chen, S. Moghaddam, M. K. Gilson, K. Kim, Y. Inoue, Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 20737–20742. [24] K. Jelínková, H. Surmová, A. Matelová, M. Rouchal, Z. Prucková, L. Dastychová, M. Necas, R. Vícha, Org. Lett. 2017, 19, 2698–2701. [25] D. Shetty, J. K. Khedkar, K. M. Park, K. Kim, Chem. Soc. Rev. 2015, 44, 8747–8761. [26] C. P. Brock, Y. Fu Acta Crystallogr., Sect. B 1997, 53, 928–938. [27] Y. H. Zhao, M. H. Abraham, A. M. Zissimos, J. Org. Chem. 2003, 68, 7368–7373. [28] S. Mecozzi, J. Rebek, Jr., Chem. Eur. J. 1998, 4, 1016–1022. [29] Y. Kim, H. Kim, Y. H. Ko, N. Selvapalam, M. V. Rekharsky, Y. Inoue, K. Kim, Chem. Eur. J. 2009, 15, 6143–6151. [30] a) W. L. Mock, N.-Y. Shih, J. Org. Chem. 1986, 51, 4440–4446;b) W. L. Mock, N.-Y. Shih, J. Am. Chem. Soc. 1988, 110, 4706–4710. [31] a) W. S. Jeon, K. Moon, S. H. Park, H. Chun, Y. H. Ko, J. Y. Lee, E. S. Lee, S. Samal, N. Selvapalam, M. V. Rekharsky, V. Sindelar, D. Sobransingh, Y. Inoue, A. E. Kaifer, K. Kim, J. Am. Chem. Soc. 2005, 127, 12984–12989;b) I. Hwang, K. Baek, M. Jung, Y. Kim, K. M. Park, D.-W. Lee, N. Selvapalam, K. Kim, J. Am. Chem. Soc. 2007, 129, 4170–4171;c) L. Peng, A. Feng, M. Huo, J, Yuan, Chem. Commun. 2014, 50, 13005–13014. [32] E. Babjaková, P. Branná, M. Kuczyńska, M. Rouchal, Z. Prucková, L. Dastychová, J. Vícha, R. Vícha, RSC Adv. 2016, 6, 105146–105153. [33] P. Branná, M. Rouchal, Z. Prucková, L. Dastychová, R. Lenobel, T. Pospíšil, K. Malác, R. Vícha, Chem. Eur. J. 2015, 21, 11712–11718. [34] H.-L. Sun, H.-Y. Zhang, Z. Dai, X. Han, Y. Liu, Chem. Asian J. 2017, 12, 265–270. [35] P. Branná, J. cernochová, M. Rouchal, P. Kulhánek, M. Babinský, R. Marek, M. Necas, I. Kuřitka, R. Vícha, J. Org. Chem. 2016, 81, 9595–9604. [36] O. Dumele, B. Schreib, U. Warzok, N. Trapp, C. A. Schalley, F. Diederich, Angew. Chem. 2017, 129, 1172–1177; Angew. Chem. Int. Ed. 2017, 56, 1152–1157. [37] E. Huerta, S. A. Serapian, E. Santos, E. Cequier, C. Bo, J. de Mendoza, Chem. Eur. J. 2016, 22, 13496–13505. [38] C. Ke, N. L. Strutt, H. Li, X. Hou, K. J. Hartlieb, P. R. McGonigal, Z. Ma, J. Iehl, C. L. Stern, C. Cheng, Z. Zhu, N. A. Vermeulen, T. J. Meade, Y. Y. Botros, J. F. Stoddart, J. Am. Chem. Soc. 2013, 135, 17019–17030. [39] M. V. Rekharsky, H. Yamamura, M. Kawai, I. Osaka, R. Arakawa, A. Sato, Y. H. Ko, N. Selvapalam, K. Kim, Y. Inoue, Org. Lett. 2006, 8, 815–818. [40] H.-J. Buschmann, E. Cleve, K. Jansen, A. Wego, E. Schollmeyer, Mater. Sci. Eng. C 2001, 14, 35–39. [41] M. H. Tootoonchi, G. Sharma, J. Calles, R. Prabhakar, A. E. Kaifer, Angew. Chem. 2016, 128, 11679–11683; Angew. Chem. Int. Ed. 2016, 55, 11507–11511. [42] J. P. Da Silva, N. Jayaraj, S. Jockusch, N. J. Turro, Org. Lett. 2011, 13, 2410–2413. [43] a) G. Celtek, M. Artar, O. A. Scherman, D. Tuncel, Chem. Eur. J. 2009, 15, 10360–10363;b) E. Masson, X. Lu, X. Ling, D. L. Patchell, Org. Lett. 2009, 11, 3798–3801;c) C. P. Carvalho, Z. Domínguez, C. Domínguez, H. S. El-Sheshtawy, J. P. Da Silva, J. F. Arteaga, U. Pischel, ChemistryOpen 2017, 6, 288–294;d) M. K. Sinha, O. Reany, M. Yefet, M. Botoshansky, E. Keinan, Chem. Eur. J. 2012, 18, 5589–5605;e) I. W. Wyman, D. H. Macartney, J. Org. Chem. 2009, 74, 8031–8038. [44] a) L. Leclercq, N. Noujeim, S. H. Sanon, A. R. Schmitzer, J. Phys. Chem. B 2008, 112, 14176–14184;b) Y. Liu, X.-Y. Li, H.- Y. Zhang, C.-J. Li, F. Ding, J. Org. Chem. 2007, 72, 3640–3645. [45] a) S. G. Kulkarni, Z. Prucková, M. Rouchal, L. Dastychová, R. Vícha, J. Incl. Phenom. Macrocycl. Chem. 2016, 84, 11–20;b) T. Bednaříková, Z. Tošner, J. Horský, J. Jindřich, J. Incl. Phenom. Macrocycl. Chem. 2015, 81, 141–152. [46] S. Hou, H. Chen, H. Ma, Y. Tan, Chem. Asian J. 2017, 12, 476–483.
utb.fulltext.sponsorship The authors gratefully acknowledge the Internal Funding Agency of Tomas Bata University in Zlín (project No. IGA/FT/2017/001) for financial support.
utb.wos.affiliation [Vicha, Robert; Jelinkova, Kristyna; Rouchal, Michal] Tomas Bata Univ Zlin, Fac Technol, Dept Chem, Vavreckova 275, Zlin 76001, Czech Republic
utb.scopus.affiliation Department of Chemistry, Tomas Bata University in Zlín, Faculty of Technology, Vavrečkova 275, Zlín, Czech Republic
utb.fulltext.projects IGA/FT/2017/001
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam