Kontaktujte nás | Jazyk: čeština English
dc.title | Cucurbit[n]urils-related Multitopic Supramolecular Components: Design, Properties, and Perspectives | en |
dc.contributor.author | Vícha, Robert | |
dc.contributor.author | Jelínková, Kristýna | |
dc.contributor.author | Rouchal, Michal | |
dc.relation.ispartof | Israel Journal of Chemistry | |
dc.identifier.issn | 0021-2148 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2018 | |
utb.relation.volume | 58 | |
utb.relation.issue | 3 | |
dc.citation.spage | 215 | |
dc.citation.epage | 224 | |
dc.event.title | Wiley-VCH Verlag | |
dc.type | review | |
dc.language.iso | en | |
dc.publisher | Wiley-VCH Verlag | |
dc.identifier.doi | 10.1002/ijch.201700094 | |
dc.relation.uri | https://onlinelibrary.wiley.com/doi/full/10.1002/ijch.201700094 | |
dc.subject | host-guest systems | en |
dc.subject | rotaxanes | en |
dc.subject | multitopic guests | en |
dc.subject | cucurbit[n]uril | en |
dc.subject | cyclodextrin | en |
dc.description.abstract | Cucurbit[n]urils (CBns) are an intriguing family of macrocyclic hosts whose chemistry has undergone rapid developments in recent decades. The initial interest in the synthesis, modifications and binding properties has shifted to areas focused on applications in drug storage, delivery, and release, external-stimuli responsive devices, and molecular nano-reactors. Since CBns are fruitfully complemented by cyclodextrins (CDs) in such systems, guest molecules that contain several binding sites are needed. These multitopic guests provide not only a scaffold for holding CBns and CDs together in appropriate arrangements but also allow for manipulation with supramolecular aggregates, e. g., reorganization or release of macrocycles. In this review, we summarize recent studies related to the design of multitopic guests. Binding motifs properties, the role of attractive or repulsive lateral interactions, the competition-compensation effect, and rotaxane versus pseudorotaxane manner are discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim | en |
utb.faculty | Faculty of Technology | |
dc.identifier.uri | http://hdl.handle.net/10563/1007918 | |
utb.identifier.obdid | 43878966 | |
utb.identifier.scopus | 2-s2.0-85033799741 | |
utb.identifier.wok | 000430466900004 | |
utb.identifier.coden | ISJCA | |
utb.source | j-scopus | |
dc.date.accessioned | 2018-05-18T15:12:08Z | |
dc.date.available | 2018-05-18T15:12:08Z | |
dc.description.sponsorship | IGA/FT/2017/001 | |
dc.description.sponsorship | Internal Funding Agency of Tomas Bata University in Zlin [IGA/FT/2017/001] | |
utb.contributor.internalauthor | Vícha, Robert | |
utb.contributor.internalauthor | Jelínková, Kristýna | |
utb.contributor.internalauthor | Rouchal, Michal | |
utb.fulltext.affiliation | Robert Vícha,* [a] Kristýna Jelínková, [a] and Michal Rouchal [a] [a] Dr. R. Vícha, K. Jelínková, Dr. M. Rouchal Department of Chemistry Tomas Bata University in Zlín, Faculty of Technology Vavrečkova 275, 760 01 Zlín, Czech Republic E-mail: [email protected] | |
utb.fulltext.dates | Received: August 31, 2017 Accepted: October 24, 2017 Published online on November 14, 2017 | |
utb.fulltext.references | [1] D.-S. Guo, V. D. Uzunova, K. I. Assaf, A. I. Lazar, Y. Liu, W. M. Nau, Supramol. Chem. 2016, 28, 384–395. [2] a) G. Crini, Chem. Rev. 2014, 114, 10940–10975;b) E. M. M. Del Valle, Process Biochem. 2004, 39, 1033–1046. [3] a) W. M. Nau, M. Florea, K. I. Assaf, Isr. J. Chem. 2011, 51, 559–577;b) K. I. Assaf, W. M. Nau, Chem. Soc. Rev. 2015, 44, 394–418. [4] a) Y. Yuan, M. F. Tam, V. Simplaceanu, C. Ho, Chem. Rev. 2015, 115, 1702–1724;b) T. Yonetani, K. Kanaori, Biochim. Biophys. Acta 2013, 1834, 1873–1884. [5] L. K. S. von Krbek, C. A. Schalley, P. Thordarson, Chem. Soc. Rev. 2017, 46, 2622–2637. [6] Z. Yan, Q. Huang, W. Liang, X. Yu, D. Zhou, W. Wu, J. J. Chruma, C. Yang, Org. Lett. 2017, 19, 898–901. [7] a) G. Gonzalez-Gaitano, J. R. Isasi, I. Velaz, A. Zornoza, Curr. Pharm. Design 2017, 23, 411–432;b) J. Wang, Z. Qiu, Y. Wang, L. Li, X. Guo, D.-T. Pham, S. F. Lincoln, R. K. Prud’homme, Beilstein J. Org. Chem. 2016, 12, 50–72;c) A. Harada, Y. Takashima, M. Nakahata, Acc. Chem. Res. 2014, 47, 2128–2140. [8] a) L. Gilberg, M. S. A. Khan, M. Enderesova, V. Sindelar, Org. Lett. 2014, 16, 2446–2449;b) N. Zhao, G. O. Lloyd, O. A. Scherman, Chem. Commun. 2012, 48, 3070–3072;c) L. P. Cao, L. Isaacs, Org. Lett. 2012, 14, 3072–3075;d) B. Vinciguerra, L. P. Cao, J. R. Cannon, P. Y. Zavalij, C. Fenselau, L. Isaacs, J. Am. Chem. Soc. 2012, 134, 13133–13140;e) M. M. Ayhan, H. Karoui, M. Hardy, A. Rockenbauer, L. Charles, R. Rosas, K. Udachin, P. Tordo, D. Bardelang, O. Ouari, J. Am. Chem. Soc. 2015, 137, 10238–10245;f) M. M. Ayhan, H. Karoui, M. Hardy, A. Rockenbauer, L. Charles, R. Rosas, K. Udachin, P. Tordo, D. Bardelang, O. Ouari, J. Am. Chem. Soc. 2016, 138, 2060–2060. [9] a) M. Zhang, L. Cao, L. Isaacs, Chem. Commun. 2014, 50, 14756–14759;b) J. B. Wittenberg, P. Y. Zavalij, L. Isaacs, Angew. Chem. 2013, 125, 3778–3782; Angew. Chem. Int. Ed. 2013, 52, 3690–3694. [10] W.-H. Huang, S. Liu, P. Y. Zavalij, L. Isaacs, J. Am. Chem. Soc. 2006, 128, 14744–14745. [11] J. B. Wittenberg, M. G. Costales, P. Y. Zavalij, L. Isaacs, Chem. Commun. 2011, 47, 9420–9422. [12] K. M. Park, J. H. Roh, G. Sung, J. Murray, K. Kim, Chem. Asian J. 2017, 12, 1461–1464. [13] a) X.-J. Cheng, L.-L Liang, K. Chen, N.-N. Ji, X. Xiao, J.-X. Zhang, Y.-Q. Zhang, S.-F. Xue, Q.-J. Zhu, X.-L. Ni, Z. Tao, Angew. Chem. 2013, 125, 7393–7396; Angew. Chem. Int. Ed. 2013, 52, 7252–7255;b) Q. Li, S.-C. Qiu, J. Zhang, K. Chen, Y. Huang, X. Xiao, Y. Zhang, F. Li, Y.-Q. Zhang, S.-F. Xue, Q.-J. Zhu, Z. Tao, L. F. Lindoy, G. Wei, Org. Lett. 2016, 18, 4020–4023;c) S.-C. Qiu, K. Chen, Y. Wang, Z.-Y- Hua, F. Li, Y. Huang, Z. Tao, Y.-J. Zhang, G. Wei, Inorg. Chem. Commun. 2017, 10.1016/j.inoche.2017.09.024. [14] H. Ikeda, S. Nishikawa, Y. Yamamoto, A. Ueno, J. Mol. Cat. A 2010, 328, 1–7. [15] L. Cera, C. A. Schalley, Chem. Sci. 2014, 5, 2560–2567. [16] J. Tian, L. Zhang, H. Wang, D.-W. Zhang, Z.-T. Li, Supramol. Chem. 2016, 28, 849–856. [17] S. Tan, K. Ladewig, Q. Fu, A. Blencowe, G. G. Qiao, Macromol. Rapid. Commun. 2014, 35, 1166–1184. [18] T. Fu, Z. Li, Z. Zhang, X. Zhang, F. Wang, Macromolecules 2017, 50, 7517–7525. [19] S. Dong, B. Zheng, F. Wang, F. Huang, Acc. Chem. Res. 2014, 47, 1982–1994. [20] L. Zhu, M. Zhu, Y. Zhao, ChemPlusChem 2017, 82, 30–41. [21] a) S. Moghaddam, C. Yang, M. Rekharsky, Y. H. Ko, K. Kim, Y. Inoue, M. K. Gilson, J. Am. Chem. Soc. 2011, 133, 3570– 3581;b) S. Liu, C. Ruspic, P. Mukhopadhyay, S. Chakrabarti, P. Y. Zavalij, L. Isaacs, J. Am. Chem. Soc. 2005, 127, 15959–15967. [22] a) L. Cao, M. Šekutor, P. Y. Zavalij, K. Mlinarić-Majerski, R. Glaser, L. Isaacs, Angew. Chem. 2014, 126, 1006–1011; Angew. Chem. Int. Ed. 2014, 53, 988–993;b) D. Sigwalt, M. Šekutor, L. Cao, P. Y. Zavalij, J. Hostaš, H. Ajani, P. Hobza, K. Mlinarić-Majerski, R. Glaser, L. Isaacs, J. Am. Chem. Soc. 2017, 139, 3249–3258. [23] M. V. Rekharsky, T. Mori, C. Yang, H. K. Ko, N. Selvapalam, H. Kim, D. Sobransingh, A. E. Kaifer, S. Liu, L. Isaacs, W. Chen, S. Moghaddam, M. K. Gilson, K. Kim, Y. Inoue, Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 20737–20742. [24] K. Jelínková, H. Surmová, A. Matelová, M. Rouchal, Z. Prucková, L. Dastychová, M. Necas, R. Vícha, Org. Lett. 2017, 19, 2698–2701. [25] D. Shetty, J. K. Khedkar, K. M. Park, K. Kim, Chem. Soc. Rev. 2015, 44, 8747–8761. [26] C. P. Brock, Y. Fu Acta Crystallogr., Sect. B 1997, 53, 928–938. [27] Y. H. Zhao, M. H. Abraham, A. M. Zissimos, J. Org. Chem. 2003, 68, 7368–7373. [28] S. Mecozzi, J. Rebek, Jr., Chem. Eur. J. 1998, 4, 1016–1022. [29] Y. Kim, H. Kim, Y. H. Ko, N. Selvapalam, M. V. Rekharsky, Y. Inoue, K. Kim, Chem. Eur. J. 2009, 15, 6143–6151. [30] a) W. L. Mock, N.-Y. Shih, J. Org. Chem. 1986, 51, 4440–4446;b) W. L. Mock, N.-Y. Shih, J. Am. Chem. Soc. 1988, 110, 4706–4710. [31] a) W. S. Jeon, K. Moon, S. H. Park, H. Chun, Y. H. Ko, J. Y. Lee, E. S. Lee, S. Samal, N. Selvapalam, M. V. Rekharsky, V. Sindelar, D. Sobransingh, Y. Inoue, A. E. Kaifer, K. Kim, J. Am. Chem. Soc. 2005, 127, 12984–12989;b) I. Hwang, K. Baek, M. Jung, Y. Kim, K. M. Park, D.-W. Lee, N. Selvapalam, K. Kim, J. Am. Chem. Soc. 2007, 129, 4170–4171;c) L. Peng, A. Feng, M. Huo, J, Yuan, Chem. Commun. 2014, 50, 13005–13014. [32] E. Babjaková, P. Branná, M. Kuczyńska, M. Rouchal, Z. Prucková, L. Dastychová, J. Vícha, R. Vícha, RSC Adv. 2016, 6, 105146–105153. [33] P. Branná, M. Rouchal, Z. Prucková, L. Dastychová, R. Lenobel, T. Pospíšil, K. Malác, R. Vícha, Chem. Eur. J. 2015, 21, 11712–11718. [34] H.-L. Sun, H.-Y. Zhang, Z. Dai, X. Han, Y. Liu, Chem. Asian J. 2017, 12, 265–270. [35] P. Branná, J. cernochová, M. Rouchal, P. Kulhánek, M. Babinský, R. Marek, M. Necas, I. Kuřitka, R. Vícha, J. Org. Chem. 2016, 81, 9595–9604. [36] O. Dumele, B. Schreib, U. Warzok, N. Trapp, C. A. Schalley, F. Diederich, Angew. Chem. 2017, 129, 1172–1177; Angew. Chem. Int. Ed. 2017, 56, 1152–1157. [37] E. Huerta, S. A. Serapian, E. Santos, E. Cequier, C. Bo, J. de Mendoza, Chem. Eur. J. 2016, 22, 13496–13505. [38] C. Ke, N. L. Strutt, H. Li, X. Hou, K. J. Hartlieb, P. R. McGonigal, Z. Ma, J. Iehl, C. L. Stern, C. Cheng, Z. Zhu, N. A. Vermeulen, T. J. Meade, Y. Y. Botros, J. F. Stoddart, J. Am. Chem. Soc. 2013, 135, 17019–17030. [39] M. V. Rekharsky, H. Yamamura, M. Kawai, I. Osaka, R. Arakawa, A. Sato, Y. H. Ko, N. Selvapalam, K. Kim, Y. Inoue, Org. Lett. 2006, 8, 815–818. [40] H.-J. Buschmann, E. Cleve, K. Jansen, A. Wego, E. Schollmeyer, Mater. Sci. Eng. C 2001, 14, 35–39. [41] M. H. Tootoonchi, G. Sharma, J. Calles, R. Prabhakar, A. E. Kaifer, Angew. Chem. 2016, 128, 11679–11683; Angew. Chem. Int. Ed. 2016, 55, 11507–11511. [42] J. P. Da Silva, N. Jayaraj, S. Jockusch, N. J. Turro, Org. Lett. 2011, 13, 2410–2413. [43] a) G. Celtek, M. Artar, O. A. Scherman, D. Tuncel, Chem. Eur. J. 2009, 15, 10360–10363;b) E. Masson, X. Lu, X. Ling, D. L. Patchell, Org. Lett. 2009, 11, 3798–3801;c) C. P. Carvalho, Z. Domínguez, C. Domínguez, H. S. El-Sheshtawy, J. P. Da Silva, J. F. Arteaga, U. Pischel, ChemistryOpen 2017, 6, 288–294;d) M. K. Sinha, O. Reany, M. Yefet, M. Botoshansky, E. Keinan, Chem. Eur. J. 2012, 18, 5589–5605;e) I. W. Wyman, D. H. Macartney, J. Org. Chem. 2009, 74, 8031–8038. [44] a) L. Leclercq, N. Noujeim, S. H. Sanon, A. R. Schmitzer, J. Phys. Chem. B 2008, 112, 14176–14184;b) Y. Liu, X.-Y. Li, H.- Y. Zhang, C.-J. Li, F. Ding, J. Org. Chem. 2007, 72, 3640–3645. [45] a) S. G. Kulkarni, Z. Prucková, M. Rouchal, L. Dastychová, R. Vícha, J. Incl. Phenom. Macrocycl. Chem. 2016, 84, 11–20;b) T. Bednaříková, Z. Tošner, J. Horský, J. Jindřich, J. Incl. Phenom. Macrocycl. Chem. 2015, 81, 141–152. [46] S. Hou, H. Chen, H. Ma, Y. Tan, Chem. Asian J. 2017, 12, 476–483. | |
utb.fulltext.sponsorship | The authors gratefully acknowledge the Internal Funding Agency of Tomas Bata University in Zlín (project No. IGA/FT/2017/001) for financial support. | |
utb.wos.affiliation | [Vicha, Robert; Jelinkova, Kristyna; Rouchal, Michal] Tomas Bata Univ Zlin, Fac Technol, Dept Chem, Vavreckova 275, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Department of Chemistry, Tomas Bata University in Zlín, Faculty of Technology, Vavrečkova 275, Zlín, Czech Republic | |
utb.fulltext.projects | IGA/FT/2017/001 |