Publikace UTB
Repozitář publikační činnosti UTB

Effect of molecular weight, branching and temperature on dynamics of polypropylene melts at very high shear rates

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Effect of molecular weight, branching and temperature on dynamics of polypropylene melts at very high shear rates en
dc.contributor.author Drábek, Jiří
dc.contributor.author Zatloukal, Martin
dc.contributor.author Martyn, Mike T.
dc.relation.ispartof Polymer (United Kingdom)
dc.identifier.issn 0032-3861 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 144
dc.citation.spage 179
dc.citation.epage 183
dc.type article
dc.language.iso en
dc.publisher Elsevier
dc.identifier.doi 10.1016/j.polymer.2018.04.046
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0032386118303422
dc.subject Branching en
dc.subject High shear rate rheology en
dc.subject Polymer melt en
dc.subject Secondary newtonian viscosity en
dc.description.abstract Dynamics of linear polypropylene (L-PP) and long-chain branched polypropylene (LCB-PP) miscible blends, having weight average molecular weight between 64 and 78 kg/mol, was investigated via high shear rate rheology. Results obtained were compared with the corresponding data for L-PP. High-shear rate secondary Newtonian plateaus, η∞, were identified at three different temperatures for well entangled L-PP/LCB-PP blends above shear rates of 2·106 1/s and their dependence on weight average molecular weight, Mw, was successfully related as η∞(T)=K∞(T)·Mw n with the exponent n = 1.010. Interestingly, the temperature dependant proportionality constant K∞ was found to be about 10–20% lower for the blend in comparison with the pure L-PP whereas the parameter n was found to be the same for both systems. The average values of high-shear rate flow activation energy, E∞, for the blends was found to be slightly lower than for pure L-PP and comparable with low-shear rate flow activation energy of PP like oligomer squalane (C30H62; 2,6,10,15,19,23-hexamethyltetracosane). This suggests that polymer chains are fully disentangled at very high shear rates and chain branching can enhance the flow in this regime due to smaller coil size and higher availability of the free volume (i.e. lower monomeric friction coefficient) in comparison with their linear counterparts. © 2018 Elsevier Ltd en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007917
utb.identifier.obdid 43878935
utb.identifier.scopus 2-s2.0-85046129653
utb.identifier.wok 000432813400020
utb.identifier.coden POLMA
utb.source j-scopus
dc.date.accessioned 2018-05-18T15:12:07Z
dc.date.available 2018-05-18T15:12:07Z
dc.description.sponsorship Grant Agency of the Czech Republic [16-05886S]
utb.contributor.internalauthor Drábek, Jiří
utb.contributor.internalauthor Zatloukal, Martin
utb.fulltext.affiliation Jiri Drabek a , Martin Zatloukal a, * , Mike Martyn b a Polymer Centre, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01, Zlín, Czech Republic b IRC in Polymer Engineering, School of Engineering, Design & Technology, University of Bradford, Bradford BD7 1DP, UK * Corresponding author. E-mail address: [email protected] (M. Zatloukal).
utb.fulltext.dates Received 16 February 2018 Received in revised form 11 April 2018 Accepted 15 April 2018 Available online 23 April 2018
utb.fulltext.references [1] S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt, Polymers for 3D printing and customized additive manufacturing, Chem. Rev. 117 (15) (2017) 10212e10290. [2] Y. Ding, H.W. Ro, K.J. Alvine, B.C. Okerberg, J. Zhou, J.F. Douglas, A. Karim, C.L. Soles, Nanoimprint lithography and role of viscoelasticity in the generation of residual stress in model polystyrene patterns, Adv. Funct. Mater. 18 (12) (2008) 1854e1862. [3] H.D. Rowland, W.P. King, J.B. Pethica, G.L.W. Cross, Molecular confinement accelerates deformation of entangled polymers during squeeze flow, Science 322 (5902) (2008) 720e724. [4] C.L. Soles, Y. Ding, Material science: nanoscale polymer processing, Science 322 (5902) (2008) 689e690. [5] C.J. Ellison, A. Phatak, D.W. Giles, C.W. Macosko, F.S. Bates, Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup, Polymer 48 (11) (2007) 3306e3316. [6] H. Takahashi, T. Matsuoka, T. Kurauchi, Rheology of polymer melts in high shear rate, J. Appl. Polym. Sci. 30 (12) (1985) 4669e4684. [7] A.L. Kelly, A.T. Gough, B.R. Whiteside, P.D. Coates, High shear strain rate rheometry of polymer melts, J. Appl. Polym. Sci. 114 (2) (2009) 864e873. [8] A. Haddout, G. Villoutreix, Polymer melt rheology at high shear rates, Int. Polym. Process. 15 (3) (2000) 291e296. [9] M. Benhadou, A. Haddout, G. Villoutreix, Injection of polypropylene reinforced with short glass fibers: rheological behavior, J. Reinforc. Plast. Compos. 26 (13) (2007) 1357e1366. [10] M. Rides, A.L. Kelly, C.R.G. Allen, An investigation of high rate capillary extrusion rheometry of thermoplastics, Polym. Test. 30 (8) (2011) 916e924. [11] J. Drabek, M. Zatloukal, M. Martyn, Effect of molecular weight on secondary Newtonian plateau at high shear rates for linear isotactic melt blown poly-propylenes, J. Non-Newtonian Fluid Mech. 251 (2018) 107e118. [12] J. Drabek, M. Zatloukal, Evaluation of thermally induced degradation of branched polypropylene by using rheology and different constitutive equations, Polymers 8 (2016) 9. Art. Num. 317. [13] D. Ahirwal, S. Filipe, I. Neuhaus, M. Busch, G. Schlatter, M. Wilhelm, Large amplitude oscillatory Shear and uniaxial extensional rheology of blends from linear and long-chain branched polyethylene and polypropylene, J. Rheol. 58 (3) (2014) 635e658. [14] M. Maroufkhani, N. Golshan Ebrahimi, Melt rheology of linear and long-chain branched polypropylene blends, Iran. Polym. J. (Engl. Ed.) 24 (9) (2015) 715e724. [15] M.H. Wagner, S. Kheirandish, J. Stange, H. Münstedt, Modeling elongational viscosity of blends of linear and long-chain branched polypropylenes, Rheol. Acta 46 (2) (2006) 211e221. [16] S.H. Tabatabaei, P.J. Carreau, A. Ajji, Rheological and thermal properties of blends of a long-chain branched polypropylene and different linear poly-propylenes, Chem. Eng. Sci. 64 (22) (2009) 4719e4731. [17] J. Stange, C. Uhl, H. Münstedt, Rheological behavior of blends from a linear and a long-chain branched polypropylene, J. Rheol. 49 (5) (2005) 1059e1079. [18] Y. Wang, Application of Polymer Rheology in Melt Blowing Process and Online Rheological Sensor, Ph.D. Thesis, University of Tennessee, Knoxville, 2004. [19] D. Raps, T. Koöppl, L. Heymann, V. Altstädt, Rheological behavior of a high-melt-strength polypropylene at elevated pressure and gas loading for foaming purposes, Rheo. Acta 56 (2) (2017) 95e111. [20] K.A.G. Schmidt, D. Pagnutti, M.D. Curran, A. Singh, J.P.M. Trusler, G.C. Maitland, M. McBride-Wright, New experimental data and reference models for the viscosity and density of squalane, J. Chem. Eng. Data 60 (1) (2015) 137e150. [21] J.D. Ferry, In Viscoelastic Properties of Polymers, third ed., John Wiley & Sons, Chichester, 1980, p. 641. [22] L.A. Utracki, T. Sedlacek, Free volume dependence of polymer viscosity, Rheol. Acta 46 (4) (2007) 479e494. [23] F. Bueche, Viscosity, self-diffusion, and allied effects in solid polymers, J. Chem. Phys. 20 (12) (1952) 1959e1964. [24] J.M. Dealy, R.G. Larson, In Structure and Rheology of Molten Polymers: from Structure to Flow Behavior and Back Again, Hanser Publishers, Munich, 2006, p. 516. [25] H. Münstedt, F.R. Schwarzl, In Deformation and Flow of Polymeric Materials, Springer-Verlag Berlin and Heidelberg, 2014, p. 573. [26] R. Nayak, Polypropylene Nanofibers: Melt Electrospinning versus Meltblowing, Springer, Cham, 2017. [27] G.F. Ward, Meltblown nanofibres for nonwoven filtration applications, Filtrat. Separ. 38 (9) (2001) 42e43. [28] S.G. Hatzikiriakos, Wall Slip of Molten Polymers. Prog. In Pol. Sci. (Oxford), vol. 37, 2012, pp. 624e643, 4. [29] S.G. Hatzikiriakos, Slip mechanisms in complex fluid flows, Soft Matter 11 (40) (2015) 7851e7856.
utb.fulltext.sponsorship The authors wish to acknowledge Grant Agency of the Czech Republic (Grant registration No. 16-05886S) for the financial support. The author also wishes to acknowledge Joachim Fiebig (Borealis Polyolefine) for donation of the polypropylene melt blown samples and help with the GPC measurements and analysis.
utb.scopus.affiliation Polymer Centre, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, Zlín, Czech Republic; IRC in Polymer Engineering, School of Engineering, Design & Technology, University of Bradford, Bradford, United Kingdom
utb.fulltext.projects 16-05886S
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam