Publikace UTB
Repozitář publikační činnosti UTB

Kelvin probe force microscopy and calculation of charge transport in a graphene/silicon dioxide system at different relative humidity

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Kelvin probe force microscopy and calculation of charge transport in a graphene/silicon dioxide system at different relative humidity en
dc.contributor.author Konečný, Martin
dc.contributor.author Bartošík, Miroslav
dc.contributor.author Mach, Jindřich
dc.contributor.author Švarc, Vojtěch
dc.contributor.author Nezval, David
dc.contributor.author Piastek, Jakub
dc.contributor.author Procházka, Pavel
dc.contributor.author Cahlík, Aleš
dc.contributor.author Šikola, Tomáš
dc.relation.ispartof ACS Applied Materials and Interfaces
dc.identifier.issn 1944-8244 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 10
utb.relation.issue 14
dc.citation.spage 11987
dc.citation.epage 11994
dc.type article
dc.language.iso en
dc.publisher American Chemical Society
dc.identifier.doi 10.1021/acsami.7b18041
dc.relation.uri https://pubs.acs.org/doi/abs/10.1021/acsami.7b18041
dc.subject BET en
dc.subject electron hopping en
dc.subject grapheme en
dc.subject KPFM en
dc.subject RH en
dc.subject silicon dioxide en
dc.description.abstract The article shows how the dynamic mapping of surface potential (SP) measured by Kelvin probe force microscopy (KPFM) in combination with calculation by a diffusion-like equation and the theory based on the Brunauer-Emmett-Teller (BET) model of water condensation and electron hopping can provide the information concerning the resistivity of low conductive surfaces and their water coverage. This is enabled by a study of charge transport between isolated and grounded graphene sheets on a silicon dioxide surface at different relative humidity (RH) with regard to the use of graphene in ambient electronic circuits and especially in sensors. In the experimental part, the chemical vapor-deposited graphene is precisely patterned by the mechanical atomic force microscopy (AFM) lithography and the charge transport is studied through a surface potential evolution measured by KPFM. In the computational part, a quantitative model based on solving the diffusion-like equation for the charge transport is used to fit the experimental data and thus to find the SiO2 surface resistivity ranging from 107 to 1010 Ω and exponentially decreasing with the RH increase. Such a behavior is explained using the formation of water layers predicted by the BET adsorption theory and electron-hopping theory that for the SiO2 surface patterned by AFM predicts a high water coverage even at low RHs. © 2018 American Chemical Society. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007891
utb.identifier.obdid 43878932
utb.identifier.scopus 2-s2.0-85045341032
utb.identifier.wok 000430156000068
utb.identifier.pubmed 29557163
utb.source j-scopus
dc.date.accessioned 2018-05-18T15:12:04Z
dc.date.available 2018-05-18T15:12:04Z
dc.description.sponsorship Grant Agency of the Czech Republic [17-21413S]; Technology Agency of the Czech Republic [TE01020233]; MEYS CR [LQ1601-CEITEC 2020]; CEITEC Nano Research Infrastructure (MEYS CR) [LM2015041]
utb.contributor.internalauthor Bartošík, Miroslav
utb.fulltext.affiliation Martin Konečný , †,‡ Miroslav Bartošík,* ,†,‡,§ Jindřich Mach, †,‡ Vojtěch Švarc, †,‡ David Nezval, †,‡ Jakub Piastek, †,‡ Pavel Procházka, †,‡ Aleš Cahlík, ∥ and Tomáš Šikola †,‡ † Central European Institute of Technology, Brno University of Technology (CEITEC BUT), Purkyňova 123, 612 00 Brno, Czech Republic ‡ Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic § Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavreč kova 275, 760 01 Zlín, Czech Republic ∥ Department of Thin Films and Nanostructures, Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Praha 6, Czech Republic AUTHOR INFORMATION Corresponding Author *E-mail: [email protected]. ORCID Miroslav Bartošík: 0000-0003-4706-9112
utb.fulltext.dates Received: November 28, 2017 Accepted: March 20, 2018 Published: March 20, 2018
utb.fulltext.references (1) Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Approaching Ballistic Transport in Suspended Graphene. Nat. Nanotechnol. 2008, 3, 491−495. (2) Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh Electron Mobility in Suspended Graphene. Solid State Commun. 2008, 146, 351−355. (3) Castro Neto, A. H.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K; et al. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109−162. (4) Goerbig, M. O. Electronic Properties of Graphene in a Strong Magnetic Field. Rev. Mod. Phys. 2011, 83, No. 1193. (5) Frank, I. W.; Tanenbaum, D. M.; van der Zande, A. M.; McEuen, P. L. Mechanical Properties of Suspended Graphene Sheets. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 2007, 25, No. 2558. (6) Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385−388. (7) Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene Photonics and Optoelectronics. Nat. Photonics 2010, 4, 611−622. (8) Avouris, P.; Freitag, M. Graphene Photonics, Plasmonics, and Optoelectronics. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 72−83. (9) Chen, D.; Feng, H.; Li, J. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev. 2012, 112, 6027−6053. (10) Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012, 112, 6156−6214. (11) Yavari, F.; Koratkar, N. Graphene-Based Chemical Sensors. J. Phys. Chem. Lett. 2012, 3, 1746−1753. (12) Toda, K.; Furue, R.; Hayami, S. Recent Progress in Applications of Graphene Oxide for Gas Sensing: A Review. Anal. Chim. Acta 2015, 878, 43−53. (13) Wehling, T. O.; Novoselov, K. S.; Morozov, S. V.; Vdovin, E. E.; Katsnelson, M. I.; Geim, A. K.; Lichtenstein, A. L. Molecular Doping of Graphene. Nano Lett. 2008, 8, 173−177. (14) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438, 197−200. (15) Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of Individual Gas Molecules Adsorbed on Graphene. Nat. Mater. 2007, 6, 652−655. (16) Li, W.; Geng, X.; Guo, Y.; Rong, J.; Gong, Y.; Wu, L.; Zhang, X.; Li, P.; Xu, J.; Cheng, G.; Sun, M.; Liu, L. Reduced Graphene Oxide Electrically Contacted Graphene Sensor for Highly Sensitive Nitric Oxide Detection. ACS Nano 2011, 5, 6955−6961. (17) Lu, G.; Ocola, L. E.; Chen, J. Reduced Graphene Oxide for Room-Temperature Gas Sensors. Nanotechnology 2009, 20, No. 445502. (18) Yoon, H. J.; Jun, D. H.; Yang, J. H.; Zhou, Z.; Yang, S. S.; Cheng, M. M.-C. Carbon Dioxide Gas Sensor Using a Graphene Sheet. Sens. Actuators, B 2011, 157, 310−313. (19) Iezhokin, I.; Offermans, P.; Brongersma, S. H.; Giesbers, A. J. M.; Flipse, C. F. J. High Sensitive Quasi Freestanding Epitaxial Graphene Gas Sensor on 6H-SiC. Appl. Phys. Lett. 2013, 103, No. 053514. (20) Chen, C. W.; Hung, S. C.; Yang, M. D.; Yeh, C. W.; Wu, C. H.; Chi, G. C.; Ren, F.; et al. Oxygen Sensors Made by Monolayer Graphene under Room Temperature. Appl. Phys. Lett. 2011, 99, No. 243502. (21) Dan, Y.; Lu, Y.; Kybert, N. J.; Luo, Z.; Johnson, A. T. C. Intrinsic Response of Graphene Vapor Sensors. Nano Lett. 2009, 9, 1472−1475. (22) Borini, S.; White, R.; Wei, D.; Astley, M.; Haque, S.; Spigone, E.; Harris, N.; et al. Ultrafast Graphene Oxide Humidity Sensors. ACS Nano 2013, 7, 11166−11173. (23) Song, Y.; Luo, Y.; Zhu, C.; Li, H.; Du, D.; Lin, Y. Recent Advances in Electrochemical Biosensors Based on Graphene Two-Dimensional Nanomaterials. Biosens. Bioelectron. 2016, 76, 195−212. (24) Lu, Y.; Goldsmith, B. R.; Kybert, N. J.; Johnson, A. T. C. DNA-Decorated Graphene Chemical Sensors. Appl. Phys. Lett. 2010, 97, No. 083107. (25) Saltzgaber, G.; Wojcik, P.; Sharf, T.; Leyden, M. R.; Wardini, J. L.; Heist, C. A.; Adenuga, A. A.; Remcho, V. T.; Minot, E. D. Scalable Graphene Field-Effect Sensors for Specific Protein Detection. Nanotechnology 2013, 24, No. 355502. (26) Khatayevich, D.; Page, T.; Gresswell, C.; Hayamizu, Y.; Grady, W.; Sarikaya, M. Selective Detection of Target Proteins by Peptide- Enabled Graphene Biosensor. Small 2014, 10, 1505−1513. (27) Jung, I.; Dikin, D.; Park, S.; Cai, W.; Mielke, S. L.; Ruoff, R. S. Effect of Water Vapor on Electrical Properties of Individual Reduced Graphene Oxide Sheets Effect of Water Vapor on Electrical Properties of Individual Reduced Graphene Oxide Sheets. J. Phys. Chem. C 2008, 112, 20264−20268. (28) Lafkioti, M.; Krauss, B.; Lohmann, T.; Zschieschang, U.; Klauk, H.; Klitzing, K. V.; Smet, J. H. Graphene on a Hydrophobic Substrate: Doping Reduction and Hysteresis Suppression under Ambient Conditions. Nano Lett. 2010, 10, 1149−1153. (29) Wang, H.; Wu, Y.; Cong, C.; Shang, J.; Yu, T. Hysteresis of Electronic Transport in Graphene Transistors. ACS Nano 2010, 4, 7221−7228. (30) Song, S.; Yang, H.; Han, C.; Ko, S.; Lee, S. Metal-Oxide-Semiconductor Field Effect Transistor Humidity Sensor Using Surface Conductance. Appl. Phys. Lett. 2015, 100, No. 101603. (31) Zdrojek, M.; Mé lin, T.; Diesinger, H.; Stié venard, D.; Gebicki, W.; Adamowicz, L. Charging and Discharging Processes of Carbon Nanotubes Probed by Electrostatic Force Microscopy Charging and Discharging Processes of Carbon Nanotubes Probed by Electrostatic Force Microscopy. J. Appl. Phys. 2006, 100, No. 114326. (32) Shen, Y.; Zhang, X.; Wang, Y.; Zhou, X.; Hu, J.; Hu, J.; Guo, S. Charge Transfer between Reduced Graphene Oxide Sheets on Insulating Substrates Charge Transfer between Reduced Graphene Oxide Sheets on Insulating Substrates. Appl. Phys. Lett. 2013, 103, No. 053107. (33) Verdaguer, A.; Cardellach, M.; Segura, J. J.; Sacha, G. M.; Moser, J.; et al. Charging and Discharging of Graphene in Ambient Conditions Studied with Scanning Probe Microscopy. Appl. Phys. Lett. 2009, 94, No. 233105. (34) Kondratenko, S. V.; Lysenko, V. S.; Kozyrev, Y. N.; Kratzer, M.; Storozhuk, D. P.; Iliash, S. A.; Czibula, C.; Teichert, C. Applied Surface Science Local Charge Trapping in Ge Nanoclusters detected by Kelvin Probe Force Microscopy. Appl. Surf. Sci. 2016, 389, 783−789.
utb.fulltext.sponsorship We acknowledge the support of this work by the Grant Agency of the Czech Republic (grant No. 17-21413S). We also acknowledge the Technology Agency of the Czech Republic (grant No. TE01020233) and MEYS CR (grant No. LQ1601-CEITEC 2020) for providing the background. Part of the work was carried out with the support of CEITEC Nano Research Infrastructure (LM2015041, MEYS CR, 2016−2019).
utb.scopus.affiliation Central European Institute of Technology, Brno University of Technology (CEITEC BUT), Purkyňova 123, Brno, Czech Republic; Institute of Physical Engineering, Brno University of Technology, Technická 2, Brno, Czech Republic; Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, Zlín, Czech Republic; Department of Thin Films and Nanostructures, Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, Praha 6, Czech Republic
utb.fulltext.projects 17-21413S
utb.fulltext.projects TE01020233
utb.fulltext.projects LQ1601
utb.fulltext.projects LM2015041
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam