Kontaktujte nás | Jazyk: čeština English
dc.title | Synthesis and effect of hierarchically structured Ag-ZnO hybrid on the surface antibacterial activity of a propylene-based elastomer blends | en |
dc.contributor.author | Bažant, Pavel | |
dc.contributor.author | Sedláček, Tomáš | |
dc.contributor.author | Kuřitka, Ivo | |
dc.contributor.author | Podlipný, David | |
dc.contributor.author | Holčapková, Pavlína | |
dc.relation.ispartof | Materials | |
dc.identifier.issn | 1996-1944 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2018 | |
utb.relation.volume | 11 | |
utb.relation.issue | 3 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | MDPI AG | |
dc.identifier.doi | 10.3390/ma11030363 | |
dc.relation.uri | http://www.mdpi.com/1996-1944/11/3/363 | |
dc.subject | Ag-ZnO | en |
dc.subject | Antibacterial | en |
dc.subject | Hierarchical | en |
dc.subject | Nanocomposites | en |
dc.subject | Polypropylene | en |
dc.subject | Thermoplastic elastomers | en |
dc.description.abstract | In this study, a hybrid Ag-ZnO nanostructured micro-filler was synthesized by the drop technique for used in plastic and medical industry. Furthermore, new antibacterial polymer nanocomposites comprising particles of Ag-ZnO up to 5 wt % and a blend of a thermoplastic polyolefin elastomer (TPO) with polypropylene were prepared using twin screw micro-compounder. The morphology and crystalline-phase structure of the hybrid Ag-ZnO nanostructured microparticles obtained was characterized by scanning electron microscopy and powder X-ray diffractometry. The specific surface area of this filler was investigated by means of nitrogen sorption via the Brunauer-Emmet-Teller method. A scanning electron microscope was used to conduct a morphological study of the polymer nanocomposites. Mechanical and electrical testing showed no adverse effects on the function of the polymer nanocomposites either due to the filler utilized or the given processing conditions, in comparison with the neat polymer matrix. The surface antibacterial activity of the compounded polymer nanocomposites was assessed against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P, according to ISO 22196:2007 (E). All the materials at virtually every filler-loading level were seen to be efficient against both species of bacteria. © 2018 by the authors. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1007793 | |
utb.identifier.obdid | 43879609 | |
utb.identifier.scopus | 2-s2.0-85042802413 | |
utb.identifier.wok | 000427767200033 | |
utb.source | j-scopus | |
dc.date.accessioned | 2018-04-23T15:01:44Z | |
dc.date.available | 2018-04-23T15:01:44Z | |
dc.description.sponsorship | Ministry of Education, Youth and Sports of the Czech Republic-Program NPU I [LO1504]; European Regional Development Fund (ERDF); national budget of the Czech Republic [CZ.1.05/2.1.00/19.0409]; TBU in Zlin [IGA/CPS/2017/007] | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Bažant, Pavel | |
utb.contributor.internalauthor | Sedláček, Tomáš | |
utb.contributor.internalauthor | Kuřitka, Ivo | |
utb.contributor.internalauthor | Podlipný, David | |
utb.contributor.internalauthor | Holčapková, Pavlína | |
utb.fulltext.affiliation | Pavel Bazant *, Tomas Sedlacek, Ivo Kuritka, David Podlipny and Pavlina Holcapkova Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; [email protected] (T.S.); [email protected] (I.K.); [email protected] (D.P.); [email protected] (P.H.) * Correspondence: [email protected]; Tel.: +420-777-805-870 | |
utb.fulltext.dates | Received: 24 January 2018; Accepted: 26 February 2018; Published: 1 March 2018 | |
utb.fulltext.references | 1. Shaviv, E.; Schubert, O.; Alves-Santos, M.; Goldoni, G.; Di Felice, R.; Vallée, F.; Del Fatti, N.; Banin, U.; Sönnichsen, C. Absorption Properties of Metal–Semiconductor Hybrid Nanoparticles. ACS Nano 2011, 5, 4712–4719. [CrossRef] [PubMed] 2. Paul, D.R.; Robeson, L.M. Polymer Nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [CrossRef] 3. Palza, H. Antimicrobial Polymers with Metal Nanoparticles. Int. J. Mol. Sci. 2015, 16, 2099–2116. [CrossRef] [PubMed] 4. Aricò, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk,W. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Nat. Mater. 2005, 4, 366–377. [CrossRef] [PubMed] 5. Scholes, G.D. Book Review of Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications. J. Am. Chem. Soc. 2008, 130, 18028. [CrossRef] 6. Bazant, P.; Kuritka, I.; Hudecek, O.; Machovsky, M.; Mrlik, M.; Sedlacek, T. Microwave-Assisted Synthesis of Ag/ZnO Hybrid Filler, Preparation, and Characterization of Antibacterial Poly(Vinyl Chloride) Composites Made from the Same. Polym. Compos. 2014, 35, 19–26. [CrossRef] 7. Lu, W.; Liu, G.; Gao, S.; Xing, S.; Wang, J. Tyrosine-Assisted Preparation of Ag/ZnO Nanocomposites with Enhanced Photocatalytic Performance and Synergistic Antibacterial Activities. Nanotechnology 2008, 19, 445711. [CrossRef] [PubMed] 8. Ghosh, S.; Goudar, V.S.; Padmalekha, K.G.; Bhat, S.V.; Indi, S.S.; Vasan, H.N. ZnO/Ag Nanohybrid: Synthesis, Characterization, Synergistic Antibacterial Activity and Its Mechanism. RSC Adv. 2012, 2, 930–940. [CrossRef] 9. Bazant, P.; Munster, L.; Machovsky, M.; Sedlak, J.; Pastorek, M.; Kozakova, Z.; Kuritka, I. Wood Flour Modified by Hierarchical Ag/ZnO as Potential Filler forWood–plastic Composites with Enhanced Surface Antibacterial Performance. Ind. Crops Prod. 2014, 62, 179–187. [CrossRef] 10. Dufour, D.; Leung, V.; Lévesque, C.M. Bacterial Biofilm: Structure, Function, and Antimicrobial Resistance. Endod. Top. 2010, 22, 2–16. [CrossRef] 11. Lindsay, D.; von Holy, A. Bacterial Biofilms within the Clinical Setting: What Healthcare Professionals Should Know. J. Hosp. Infect. 2006, 64, 313–325. [CrossRef] [PubMed] 12. Beuchat, L.R. Pathogenic Microorganisms Associated with Fresh Produce. J. Food Prot. 1996, 59, 204–216. [CrossRef] 13. Samuel, U.; Guggenbichler, J.P. Prevention of Catheter-Related Infections: The Potential of a New Nano-Silver Impregnated Catheter. Int. J. Antimicrob. Agents 2004, 23, 75–78. [CrossRef] [PubMed] 14. Okelo, P.O.; Wagner, D.D.; Carr, L.E.; Wheaton, F.W.; Douglass, L.W.; Joseph, S.W. Optimization of Extrusion Conditions for Elimination of Mesophilic Bacteria during Thermal Processing of Animal Feed Mash. Anim. Feed Sci. Technol. 2006, 129, 116–137. [CrossRef] 15. Flores, G.E.; Bates, S.T.; Knights, D.; Lauber, C.L.; Stombaugh, J.; Knight, R.; Fierer, N. Microbial Biogeography of Public Restroom Surfaces. PLoS ONE 2011, 6, e28132. [CrossRef] [PubMed] 16. Bartlett, K.H.; Kennedy, S.M.; Brauer, M.; van Netten, C.; Dill, B. Evaluation and Determinants of Airborne Bacterial Concentrations in School Classrooms. J. Occup. Environ. Hyg. 2004, 1, 639–647. [CrossRef] [PubMed] 17. Seaton, A.; Tran, L.; Aitken, R.; Donaldson, K. Nanoparticles, Human Health Hazard and Regulation. J. R. Soc. Interface 2009. [CrossRef] [PubMed] 18. De Jong, W.H.; Borm, P.J. Drug Delivery and Nanoparticles: Applications and Hazards. Int. J. Nanomed. 2008, 3, 133–149. [CrossRef] 19. Wiesner, M.R.; Lowry, G.V.; Alvarez, P.; Dionysiou, D.; Biswas, P. Assessing the Risks of Manufactured Nanomaterials. Environ. Sci. Technol. 2006, 40, 4336–4345. [CrossRef] [PubMed] 20. Bazant, P.; Kuritka, I.; Munster, L.; Machovsky, M.; Kozakova, Z.; Saha, P. Hybrid Nanostructured Ag/ZnO Decorated Powder Cellulose Fillers for Medical Plastics with Enhanced Surface Antibacterial Activity. J. Mater. Sci. Mater. Med. 2014, 25, 2501–2512. [CrossRef] [PubMed] 21. Li, S.; Meng, L.M.; Toprak, M.S.; Kim, D.K.; Muhammed, M. Nanocomposites of Polymer and Inorganic Nanoparticles for Optical and Magnetic Applications. Nano Rev. 2010, 1, 5214. [CrossRef] [PubMed] 22. Clemons, C.M.; Caulfield, D.F. Natural Fibers. In Functional Fillers for Plastics; Xanthos, M., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005; pp. 195–206. [CrossRef] 23. Müller, K.; Bugnicourt, E.; Latorre,M.; Jorda,M.; Echegoyen Sanz, Y.; Lagaron, J.M.; Miesbauer, O.; Bianchin, A.; Hankin, S.; Bölz, U.; et al. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials 2017, 7, 74. [CrossRef] [PubMed] 24. Tanahashi, M. Development of Fabrication Methods of Filler/Polymer Nanocomposites: With Focus on Simple Melt-Compounding-Based Approach without Surface Modification of Nanofillers. Materials 2010, 3, 1593–1619. [CrossRef] 25. Hornsby, P. Compounding of Particulate-Filled Thermoplastics. In Polymers and Polymeric Composites: A Reference Series; Palsule, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–16. 26. Machovsky,M.; Kuritka, I.; Bazant, P.; Vesela, D.; Saha, P. Antibacterial Performance of ZnO-Based Fillers with Mesoscale Structured Morphology in Model Medical PVC Composites. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 41, 70–77. [CrossRef] [PubMed] 27. Jang, Y.H.; Kochuveedu, S.T.; Cha, M.-A.; Jang, Y.J.; Lee, J.Y.; Lee, J.; Lee, J.; Kim, J.; Ryu, D.Y.; Kim, D.H. Synthesis and Photocatalytic Properties of HierarchicalMetal Nanoparticles/ZnO Thin Films Hetero NanostructuresAssisted byDiblock Copolymer InverseMicellarNanotemplates. J. Colloid Interface Sci. 2010, 345, 125–130. [CrossRef] [PubMed] 28. Zheng, Y.; Zheng, L.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K. Ag/ZnO Heterostructure Nanocrystals: Synthesis, Characterization, and Photocatalysis. Inorg. Chem. 2007, 46, 6980–6986. [CrossRef] [PubMed] 29. Dou, P.; Tan, F.;Wang,W.; Sarreshteh, A.; Qiao, X.; Qiu, X.; Chen, J. One-StepMicrowave-Assisted Synthesis of Ag/ZnO/Graphene Nanocomposites with Enhanced Photocatalytic Activity. J. Photochem. Photobiol. A Chem. 2015, 302, 17–22. [CrossRef] 30. Motshekga, S.C.; Ray, S.S.; Onyango, M.S.; Momba, M.N.B. Microwave-Assisted Synthesis, Characterization and Antibacterial Activity of Ag/ZnO Nanoparticles Supported Bentonite Clay. J. Hazard. Mater. 2013, 262, 439–446. [CrossRef] [PubMed] 31. Ye, X.-Y.; Zhou, Y.-M.; Sun, Y.-Q.; Chen, J.; Wang, Z.-Q. Preparation and Characterization of Ag/ZnO Composites via a Simple Hydrothermal Route. J. Nanopart. Res. 2009, 11, 1159–1166. [CrossRef] 32. Kakhki, R.M.; Tayebee, R.; Ahsani, F. New and Highly Efficient Ag Doped ZnO Visible Nano Photocatalyst for Removing of Methylene Blue. J. Mater. Sci. Mater. Electron. 2017, 28, 5941–5952. [CrossRef] 33. Patil, S.S.; Mali, M.G.; Tamboli, M.S.; Patil, D.R.; Kulkarni, M.V.; Yoon, H.; Kim, H.; Al-Deyab, S.S.; Yoon, S.S.; Kolekar, S.S.; et al. Green Approach for Hierarchical Nanostructured Ag-ZnO and Their Photocatalytic Performance under Sunlight. Catal. Today 2016, 260, 126–134. [CrossRef] 34. Huang, Q.; Zhang, Q.; Yuan, S.; Zhang, Y.; Zhang, M. One-Pot Facile Synthesis of Branched Ag-ZnO Heterojunction Nanostructure as Highly Efficient Photocatalytic Catalyst. Appl. Surf. Sci. 2015, 353, 949–957. [CrossRef] 35. Liu, Y.; Wei, S.; Gao, W. Ag/ZnO Heterostructures and Their Photocatalytic Activity under Visible Light: Effect of Reducing Medium. J. Hazard. Mater. 2015, 287, 59–68. [CrossRef] [PubMed] 36. Drobny, J.G. 7-Polyolefin-Based Thermoplastic Elastomers. InHandbook of Thermoplastic Elastomers; PlasticsDesign Library;William Andrew Publishing: Norwich, NY, USA, 2007; pp. 191–199, ISBN 9780323221368. 37. O’Connor, K.S.; Watts, A.; Vaidya, T.; LaPointe, A.M.; Hillmyer, M.A.; Coates, G.W. Controlled Chain Walking for the Synthesis of Thermoplastic Polyolefin Elastomers: Synthesis, Structure, and Properties. Macromolecules 2016, 49, 6743–6751. [CrossRef] 38. Leone, G.; Mauri, M.; Pierro, I.; Ricci, G.; Canetti, M.; Bertini, F. Polyolefin Thermoplastic Elastomers from 1-Octene Chain-Walking Polymerization. Polymer 2016, 100, 37–44. [CrossRef] 39. Rouquerol, J.; Rouquerol, F.; Llewellyn, P.; Maurin, G.; Sing, K.S.W. Adsorption by Powders and Porous Solids: Principles,Methodology and Applications; Academic Press: Cambridge,MA, USA, 2013; ISBN 978-0-12-598920-6. 40. Plastics—Determination of Flexural Properties; ISO 178:2010; International Organization for Standardization: Geneva, Switzerland, 2010. 41. Standard TestMethods for DC Resistance or Conductance of InsulatingMaterials; ASTMD257-14; ASTMInternational Standard: West Conshohocken, PA, USA, 2014. 42. Plastics—Measurement of Antibacterial Activity on Plastics Surfaces; ISO 22196:2007; International Organization for Standardization: Geneva, Switzerland, 2007. 43. Zhou, X.; Liu, D.; Bu, H.; Deng, L.; Liu, H.; Yuan, P.; Du, P.; Song, H. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review. Solid Earth Sci. 2018, 3, 16–29. [CrossRef] 44. Saoud, K.; Alsoubaihi, R.; Bensalah, N.; Bora, T.; Bertino, M.; Dutta, J. Synthesis of Supported Silver Nano-Spheres on Zinc Oxide Nanorods for Visible Light Photocatalytic Applications. Mater. Res. Bull. 2015, 63, 134–140. [CrossRef] 45. Machovský, M.; Mrlík, M.; Plachý, T.; Kuřitka, I.; Pavlínek, V.; Kožáková, Z.; Kitano, T. The Enhanced Magnetorheological Performance of Carbonyl Iron Suspensions Using Magnetic Fe3O4/ZHS Hybrid Composite Sheets. RSC Adv. 2015, 5, 19213–19219. [CrossRef] 46. Plastics—Determination of Tensile Properties—Part 2: Test Condition for Moulding and Extrusion Plastics; ISO 527-2:2012; International Organization for Standardization: Geneva, Switzerland, 2012. 47. Look, D.C. Progress in ZnO Materials and Devices. J. Electron. Mater. 2006, 35, 1299–1305. [CrossRef] 48. Matula, R.A. Electrical Resistivity of Copper, Gold, Palladium, and Silver. J. Phys. Chem. Ref. Data 1979, 8, 1147–1298. [CrossRef] 49. Gulrez, S.K.H.; AliMohsin,M.E.; Shaikh, H.; Anis, A.; Pulose, A.M.; Yadav,M.K.; Qua, E.H.P.; Al-Zahrani, S.M. A Review on Electrically Conductive Polypropylene and Polyethylene. Polym. Compos. 2014, 35, 900–914. [CrossRef] 50. Antimicrobial Products—Test for Antimicrobial Activity and Efficacy; JIS Z 2801:2010; Japanese Industrial Standard: Tokyo, Japan, 2000. 51. Bazant, P.; Kuritka, I.; Munster, L.; Kalina, L. Microwave Solvothermal Decoration of the Cellulose Surface by Nanostructured Hybrid Ag/ZnO Particles: A Joint XPS, XRD and SEM Study. Cellulose 2015, 22, 1275–1293. [CrossRef] 52. Marambio-Jones, C.; Hoek, E.M.V. A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment. J. Nanopart. Res. 2010, 12, 1531–1551. [CrossRef] 53. Kong, H.; Jang, J. Antibacterial Properties of Novel Poly(Methyl Methacrylate) Nanofiber Containing Silver Nanoparticles. Langmuir 2008, 24, 2051–2056. [CrossRef] [PubMed] 54. AshaRani, P.; Hande, M.P.; Valiyaveettil, S. Anti-Proliferative Activity of Silver Nanoparticles. BMC Cell Biol. 2009, 10, 65. [CrossRef] [PubMed] 55. Klapiszewski, Ł.; Rzemieniecki, T.; Krawczyk, M.; Malina, D.; Norman, M.; Zdarta, J.; Majchrzak, I.; Dobrowolska, A.; Czaczyk, K.; Jesionowski, T. Kraft Lignin/Silica-AgNPs as a Functional Material with Antibacterial Activity. Colloid Surf. B 2015, 134, 220–228. [CrossRef] [PubMed] 56. Reddy, K.M.; Feris, K.; Bell, J.; Wingett, D.G.; Hanley, C.; Punnoose, A. Selective Toxicity of Zinc Oxide Nanoparticles to Prokaryotic and Eukaryotic Systems. Appl. Phys. Lett. 2007, 90, 213902. [CrossRef] [PubMed] 57. Padmavathy, N.; Vijayaraghavan, R. Enhanced Bioactivity of ZnO Nanoparticles—An Antimicrobial Study. Sci. Technol. Adv. Mater. 2008, 9, 035004.[CrossRef] [PubMed] 58. Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide-From Synthesis to Application: A Review. Materials 2014, 7, 2833–2881. [CrossRef] [PubMed] 59. Nowacka,M.;Modrzejewska-Sikorska, A.; Chrzanowski, Ł.; Ambroz˙ ewicz, D.; Rozmanowski, T.;Myszka, K.; Czaczyk, K.; Bula, K.; Jesionowski, T. Electrokinetic and Bioactive Properties of CuO·SiO2 Oxide Composites. Bioelectrochemistry 2012, 87, 50–57. [CrossRef] [PubMed] 60. Fortunati, E.; Armentano, I.; Zhou,Q.; Iannoni,A.; Saino, E.; Visai, L.; Berglund, L.A.; Kenny, J.M.Multifunctional Bionanocomposite Films of Poly(LacticAcid), CelluloseNanocrystals and SilverNanoparticles. Carbohydr. Polym. 2012, 87, 1596–1605. [CrossRef] 61. Tomacheski, D.; Pittol, M.; Ferreira Ribeiro, V.; Marlene Campomanes Santana, R. Efficiency of Silver-Based Antibacterial Additives and Its Influence in Thermoplastic Elastomers. J. Appl. Polym. Sci. 2016, 133. [CrossRef] 62. Pittol,M.; Tomacheski, D.; Simoes, D.N.; Ribeiro, V.F.; Campomanes Santana, R.M. Antimicrobial Performance of Thermoplastic Elastomers Containing Zinc Pyrithione and Silver Nanoparticles. Mater. Res. 2017, 20, 1266–1273. [CrossRef] | |
utb.fulltext.sponsorship | This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic-Program NPU I (LO1504). This article was written with the support of Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and national budget of the Czech Republic, within the framework of the project CPS—strengthening research capacity (reg. number: CZ.1.05/2.1.00/19.0409) and an internal grant from TBU in Zlin no. IGA/CPS/2017/007. | |
utb.scopus.affiliation | Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, Zlin, Czech Republic | |
utb.fulltext.projects | LO1504 | |
utb.fulltext.projects | CZ.1.05/2.1.00/19.0409 | |
utb.fulltext.projects | IGA/CPS/2017/007 |