Publikace UTB
Repozitář publikační činnosti UTB

Rheological properties of food hydrocolloids based on polysaccharides

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Rheological properties of food hydrocolloids based on polysaccharides en
dc.contributor.author Lapčíková, Barbora
dc.contributor.author Valenta, Tomáš
dc.contributor.author Lapčík, Lubomír
dc.relation.ispartof Journal of Polymer Materials
dc.identifier.issn 0973-8622 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 34
utb.relation.issue 3
dc.citation.spage 631
dc.citation.epage 645
dc.type article
dc.language.iso en
dc.publisher Prints Publications Pvt. Ltd.
dc.relation.uri http://www.printspublications.com/journal/journalofpolymermaterialsaninternationaljournal13712463644
dc.subject Hydrocolloids en
dc.subject Flow behaviour en
dc.subject Flow parameters en
dc.subject Intrinsic viscosity en
dc.subject Kraemer constant en
dc.description.abstract The aim of this study was to characterize rheological properties of shear-thinning polysaccharides (guar gum, kappa-carrageenan, xanthan gum), which are widely used as food hydrocolloids in food processing. Viscometric analysis of the polysaccharides solutions both in distilled water and in 0.07M KCI at the temperature range of 20 to 45 degrees C confirmed strong concentration dependency of the solutions viscosities as reflected in observed significant changes of the flow parameters, calculated by the Ostwald-de Waele and Herschel-Bulkley rheological models. The consistency coefficient (k) of the solutions increased with concentration, whereas the flow behaviour index (n) decreased in all studied hydrocolloids except xanthan gum aqueous solutions. The temperature had an opposite effect in comparison to one obtained for concentration dependencies; k decreased with temperature, while n increased. However, xanthan gum both in water and KCI exhibited a different patterns of the flow parameters dependencies on temperature, and provided some specific properties, such as relatively viscous solutions at higher temperatures, and a noticeable yield stress in the whole studied temperature range. The transition from double helical structure of the polysaccharides to single coil conformation in water and KCI aqueous solutions at 30 degrees C temperature was proved by the steep change of the Kraemer constant temperature en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007772
utb.identifier.obdid 43876650
utb.identifier.scopus 2-s2.0-85043999821
utb.identifier.wok 000423653700010
utb.identifier.coden JOPME
utb.source j-wok
dc.date.accessioned 2018-02-26T10:20:07Z
dc.date.available 2018-02-26T10:20:07Z
dc.description.sponsorship national budget of the Czech Republic within the research project of the Tomas Bata University in Zlin Internal Grant Agency [IGA/FT/2017/004]
utb.contributor.internalauthor Lapčíková, Barbora
utb.contributor.internalauthor Valenta, Tomáš
utb.contributor.internalauthor Lapčík, Lubomír
utb.fulltext.affiliation BARBORA LAPČÍKOVÁ, TOMÁš VALENTA AND LUBOMÍR LAPČÍK * Tomas Bata University in Zlín, Department of Foodstuff Technology, Faculty of Technology, Nám. T.G. Masaryka 275, 762 72 Zlín, Czech Republic Correspondence author e-mail: [email protected]
utb.fulltext.dates Received: 11-06-2017 Accepted: 27-07-2017
utb.fulltext.references 1. M. Mohammadi, N. Sadeghnia, M. Azizi, T. Neyestani, A.M. Mortazavian, Journal of Industrial and Engineering Chemistry 20 (2014) 1812-1818. 2. D.M. Silva, C. Nunes, I. Pereira, A.S.P. Moreira, M.R.M. Domingues, M.A. Coimbra, F.M. Gama, Carbohydr. Polym. 114 (2014) 458-466. 3. P. Varela, S.M. Fiszman, Food Hydrocoll. 25 (2011) 1801-1812. 4. C. Viebke, S. Al-Assaf, G.O. Phillips, Bioactive Carbohydrates and Dietary Fibre 4 (2014) 101-114. 5. N. Rhein-Knudsen, M.T. Ale, F. Ajalloueian, L. Yu, A.S. Meyer, Food Hydrocoll. 63 (2017) 50-58. 6. P. Tomasik, Chemical and Functional Properties of Food Saccharides, P. Tomasik (Ed.), CRC Press LLC: Boca Raton, 2004, p. 1-18. 7. C. Cevoli, F. Balestra, L. Ragni, A. Fabbri, Food Hydrocoll. 33 (2013) 142-150. 8. P.A. Williams, G.O. Phillips, Handbook of Hydrocolloids, G.O. Phillips, P.A. Williams (Eds.), Woodhead Publishing: Cambridge, 2009, p. 1-22. 9. L. Ramsden, Chemical and Functional Properties of Food Saccharides, P. Tomasik (Ed.), CRC Press LLC: Boca Raton, 2004, p. 231-255. 10. J. Li, S. Nie, Food Hydrocoll. 53 (2016) 46-61. 11. T.Y. Bogracheva, Y.L. Wang, T.L. Wang, C.L. Hedley, Biopolymers 64 (2002) 268-281. 12. D.F. Coral, P. Pineda-Gómez, A. Rosales-Rivera, M.E. Rodriguez-Garcia, Journal of Physics: Conference Series 167 (2009). 13. Z. Fu, L. Wang, H. Zou, D. Li, B. Adhikari, Carbohydr. Polym. 101 (2014) 727-732. 14. J. Jane, Y.Y. Chen, L.F. Lee, A. McPherson, Cereal Chemistry 76 (1999) 629-637. 15. M. Marcotte, A.R. Taherian, M. Trigui, H.S. Ramaswamy, J. Food Eng. 48 (2001) 157-167. 16. P. Shao, M. Qin, L. Han, P. Sun, Carbohydr. Polym. 113 (2014) 365-372. 17. L.O. Figura, A.A. Teixeira, Food Physics, Springer-Verlag: Berlin, 2007. 18. A.I. Bourbon, A.C. Pinheiro, C. Ribeiro, C. Miranda, J.M. Maia, J.A. Teixeira, A.A. Vicente, Food Hydrocoll. 24 (2010) 184-192. 19. M. Tomšič, F. Prossnigg, O. Glatter, J. Colloid Interface Sci. 322 (2008) 41-50. 20. B. Magny, I. Iliopoulos, A. Audebert, Macromolecular complexes in chemistry and biology, P. Dubin, J. Bock, R. Davies, D.N. Schulz, C. Thies (Eds.), Springer-Verlag: Berlin, 1994, p. 51-62. 21. D.A. Garrec, B. Guthrie, I.T. Norton, Food Hydrocoll. 33 (2013) 151-159. 22. I. Kupská, L. Lapčík, B. Lapčíková, K. Žáková, J. Juříková, Colloids Surf. Physicochem. Eng. Aspects 454 (2014) 32-37. 23. V.C. Kelessidis, R. Maglione, C. Tsamantaki, Y. Aspirtakis, Journal of Petroleum Science and Engineering 53 (2006) 203-224. 24. M.M. Razi, V.C. Kelessidis, R. Maglione, M. Ghiass, M.A. Ghayyem, J. Dispersion Sci. Technol. 35 (2014) 1793-1800. 25. C. Brunchi, S. Morariu, M. Bercea, Colloids and Surfaces B: Biointerfaces 122 (2014) 512-519. 26. M. Marcotte, A.R. Taherian Hoshahili, H.S. Ramaswamy, Food Res. Int. 34 (2001) 695-703. 27. Z. Wang, J. Wu, L. Zhu, X. Zhan, Carbohydr. Polym. 157 (2017) 521-526. 28. S. Wang, L. He, J. Guo, J. Zhao, H. Tang, Int. J. Biol. Macromol. 76 (2015) 262-268. 29. X. Ma, M. Pawlik, Carbohydr. Polym. 70 (2007) 15-24. 30. T. Brenner, R. Tuvikene, A. Parker, S. Matsukawa, K. Nishinari, Food Hydrocoll. 39 (2014) 272-279. 31. Y. Chen, M. Liao, D.E. Dunstan, Carbohydr. Polym. 50 (2002) 109-116. 32. M.C. Núñez-Santiago, A. Tecante, C. Garnier, J.L. Doublier, Food Hydrocoll. 25 (2011) 32-41. 33. L. Piculell, J. Borgström, I.S. Chronakis, P.-. Quist, C. Viebke, Int. J. Biol. Macromol. 21 (1997) 141-153.
utb.fulltext.sponsorship This work was financially supported by the national budget of the Czech Republic within the research project of the Tomas Bata University in Zlin Internal Grant Agency (reg. number: IGA/FT/2017/004).
utb.wos.affiliation [Lapcikova, Barbora; Valenta, Tomas; Lapcik, Lubomir] Tomas Bata Univ Zlin, Fac Technol, Dept Foodstuff Technol, Nam TG Masaryka 275, Zlin 76272, Czech Republic
utb.fulltext.projects IGA/FT/2017/004
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam