Kontaktujte nás | Jazyk: čeština English
dc.title | Rheological properties of food hydrocolloids based on polysaccharides | en |
dc.contributor.author | Lapčíková, Barbora | |
dc.contributor.author | Valenta, Tomáš | |
dc.contributor.author | Lapčík, Lubomír | |
dc.relation.ispartof | Journal of Polymer Materials | |
dc.identifier.issn | 0973-8622 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2017 | |
utb.relation.volume | 34 | |
utb.relation.issue | 3 | |
dc.citation.spage | 631 | |
dc.citation.epage | 645 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Prints Publications Pvt. Ltd. | |
dc.relation.uri | http://www.printspublications.com/journal/journalofpolymermaterialsaninternationaljournal13712463644 | |
dc.subject | Hydrocolloids | en |
dc.subject | Flow behaviour | en |
dc.subject | Flow parameters | en |
dc.subject | Intrinsic viscosity | en |
dc.subject | Kraemer constant | en |
dc.description.abstract | The aim of this study was to characterize rheological properties of shear-thinning polysaccharides (guar gum, kappa-carrageenan, xanthan gum), which are widely used as food hydrocolloids in food processing. Viscometric analysis of the polysaccharides solutions both in distilled water and in 0.07M KCI at the temperature range of 20 to 45 degrees C confirmed strong concentration dependency of the solutions viscosities as reflected in observed significant changes of the flow parameters, calculated by the Ostwald-de Waele and Herschel-Bulkley rheological models. The consistency coefficient (k) of the solutions increased with concentration, whereas the flow behaviour index (n) decreased in all studied hydrocolloids except xanthan gum aqueous solutions. The temperature had an opposite effect in comparison to one obtained for concentration dependencies; k decreased with temperature, while n increased. However, xanthan gum both in water and KCI exhibited a different patterns of the flow parameters dependencies on temperature, and provided some specific properties, such as relatively viscous solutions at higher temperatures, and a noticeable yield stress in the whole studied temperature range. The transition from double helical structure of the polysaccharides to single coil conformation in water and KCI aqueous solutions at 30 degrees C temperature was proved by the steep change of the Kraemer constant temperature | en |
utb.faculty | Faculty of Technology | |
dc.identifier.uri | http://hdl.handle.net/10563/1007772 | |
utb.identifier.obdid | 43876650 | |
utb.identifier.scopus | 2-s2.0-85043999821 | |
utb.identifier.wok | 000423653700010 | |
utb.identifier.coden | JOPME | |
utb.source | j-wok | |
dc.date.accessioned | 2018-02-26T10:20:07Z | |
dc.date.available | 2018-02-26T10:20:07Z | |
dc.description.sponsorship | national budget of the Czech Republic within the research project of the Tomas Bata University in Zlin Internal Grant Agency [IGA/FT/2017/004] | |
utb.contributor.internalauthor | Lapčíková, Barbora | |
utb.contributor.internalauthor | Valenta, Tomáš | |
utb.contributor.internalauthor | Lapčík, Lubomír | |
utb.fulltext.affiliation | BARBORA LAPČÍKOVÁ, TOMÁš VALENTA AND LUBOMÍR LAPČÍK * Tomas Bata University in Zlín, Department of Foodstuff Technology, Faculty of Technology, Nám. T.G. Masaryka 275, 762 72 Zlín, Czech Republic Correspondence author e-mail: [email protected] | |
utb.fulltext.dates | Received: 11-06-2017 Accepted: 27-07-2017 | |
utb.fulltext.references | 1. M. Mohammadi, N. Sadeghnia, M. Azizi, T. Neyestani, A.M. Mortazavian, Journal of Industrial and Engineering Chemistry 20 (2014) 1812-1818. 2. D.M. Silva, C. Nunes, I. Pereira, A.S.P. Moreira, M.R.M. Domingues, M.A. Coimbra, F.M. Gama, Carbohydr. Polym. 114 (2014) 458-466. 3. P. Varela, S.M. Fiszman, Food Hydrocoll. 25 (2011) 1801-1812. 4. C. Viebke, S. Al-Assaf, G.O. Phillips, Bioactive Carbohydrates and Dietary Fibre 4 (2014) 101-114. 5. N. Rhein-Knudsen, M.T. Ale, F. Ajalloueian, L. Yu, A.S. Meyer, Food Hydrocoll. 63 (2017) 50-58. 6. P. Tomasik, Chemical and Functional Properties of Food Saccharides, P. Tomasik (Ed.), CRC Press LLC: Boca Raton, 2004, p. 1-18. 7. C. Cevoli, F. Balestra, L. Ragni, A. Fabbri, Food Hydrocoll. 33 (2013) 142-150. 8. P.A. Williams, G.O. Phillips, Handbook of Hydrocolloids, G.O. Phillips, P.A. Williams (Eds.), Woodhead Publishing: Cambridge, 2009, p. 1-22. 9. L. Ramsden, Chemical and Functional Properties of Food Saccharides, P. Tomasik (Ed.), CRC Press LLC: Boca Raton, 2004, p. 231-255. 10. J. Li, S. Nie, Food Hydrocoll. 53 (2016) 46-61. 11. T.Y. Bogracheva, Y.L. Wang, T.L. Wang, C.L. Hedley, Biopolymers 64 (2002) 268-281. 12. D.F. Coral, P. Pineda-Gómez, A. Rosales-Rivera, M.E. Rodriguez-Garcia, Journal of Physics: Conference Series 167 (2009). 13. Z. Fu, L. Wang, H. Zou, D. Li, B. Adhikari, Carbohydr. Polym. 101 (2014) 727-732. 14. J. Jane, Y.Y. Chen, L.F. Lee, A. McPherson, Cereal Chemistry 76 (1999) 629-637. 15. M. Marcotte, A.R. Taherian, M. Trigui, H.S. Ramaswamy, J. Food Eng. 48 (2001) 157-167. 16. P. Shao, M. Qin, L. Han, P. Sun, Carbohydr. Polym. 113 (2014) 365-372. 17. L.O. Figura, A.A. Teixeira, Food Physics, Springer-Verlag: Berlin, 2007. 18. A.I. Bourbon, A.C. Pinheiro, C. Ribeiro, C. Miranda, J.M. Maia, J.A. Teixeira, A.A. Vicente, Food Hydrocoll. 24 (2010) 184-192. 19. M. Tomšič, F. Prossnigg, O. Glatter, J. Colloid Interface Sci. 322 (2008) 41-50. 20. B. Magny, I. Iliopoulos, A. Audebert, Macromolecular complexes in chemistry and biology, P. Dubin, J. Bock, R. Davies, D.N. Schulz, C. Thies (Eds.), Springer-Verlag: Berlin, 1994, p. 51-62. 21. D.A. Garrec, B. Guthrie, I.T. Norton, Food Hydrocoll. 33 (2013) 151-159. 22. I. Kupská, L. Lapčík, B. Lapčíková, K. Žáková, J. Juříková, Colloids Surf. Physicochem. Eng. Aspects 454 (2014) 32-37. 23. V.C. Kelessidis, R. Maglione, C. Tsamantaki, Y. Aspirtakis, Journal of Petroleum Science and Engineering 53 (2006) 203-224. 24. M.M. Razi, V.C. Kelessidis, R. Maglione, M. Ghiass, M.A. Ghayyem, J. Dispersion Sci. Technol. 35 (2014) 1793-1800. 25. C. Brunchi, S. Morariu, M. Bercea, Colloids and Surfaces B: Biointerfaces 122 (2014) 512-519. 26. M. Marcotte, A.R. Taherian Hoshahili, H.S. Ramaswamy, Food Res. Int. 34 (2001) 695-703. 27. Z. Wang, J. Wu, L. Zhu, X. Zhan, Carbohydr. Polym. 157 (2017) 521-526. 28. S. Wang, L. He, J. Guo, J. Zhao, H. Tang, Int. J. Biol. Macromol. 76 (2015) 262-268. 29. X. Ma, M. Pawlik, Carbohydr. Polym. 70 (2007) 15-24. 30. T. Brenner, R. Tuvikene, A. Parker, S. Matsukawa, K. Nishinari, Food Hydrocoll. 39 (2014) 272-279. 31. Y. Chen, M. Liao, D.E. Dunstan, Carbohydr. Polym. 50 (2002) 109-116. 32. M.C. Núñez-Santiago, A. Tecante, C. Garnier, J.L. Doublier, Food Hydrocoll. 25 (2011) 32-41. 33. L. Piculell, J. Borgström, I.S. Chronakis, P.-. Quist, C. Viebke, Int. J. Biol. Macromol. 21 (1997) 141-153. | |
utb.fulltext.sponsorship | This work was financially supported by the national budget of the Czech Republic within the research project of the Tomas Bata University in Zlin Internal Grant Agency (reg. number: IGA/FT/2017/004). | |
utb.wos.affiliation | [Lapcikova, Barbora; Valenta, Tomas; Lapcik, Lubomir] Tomas Bata Univ Zlin, Fac Technol, Dept Foodstuff Technol, Nam TG Masaryka 275, Zlin 76272, Czech Republic | |
utb.fulltext.projects | IGA/FT/2017/004 |