Kontaktujte nás | Jazyk: čeština English
dc.title | Acoustic investigation of the structure of magneto-rheological fluid | en |
dc.contributor.author | Kúdelčík, Jozef | |
dc.contributor.author | Bury, Peter | |
dc.contributor.author | Hardoň, Štefan | |
dc.contributor.author | Sedlačík, Michal | |
dc.contributor.author | Plachý, Tomáš | |
dc.relation.ispartof | Communications - Scientific Letters of the University of Zilina | |
dc.identifier.issn | 1335-4205 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2017 | |
utb.relation.volume | 19 | |
utb.relation.issue | 3 | |
dc.citation.spage | 51 | |
dc.citation.epage | 56 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | University of Zilina | |
dc.relation.uri | http://www3.uniza.sk/komunikacie/menu/komunik.asp?id=4&rok=2017&cislo=3&p=o | |
dc.subject | acoustic spectroscopy | en |
dc.subject | anisotropy | en |
dc.subject | magneto-rheological fluid | en |
dc.subject | Particle structure | en |
dc.description.abstract | The acoustic spectroscopy is used to study properties and changes in structural arrangement in silicone oil based magneto-rheological fluids with carbonyl iron particles upon the effect of an external magnetic field. Attenuation spectra at three temperatures for various concentrations of magnetic particles are presented. The attenuation of acoustic waves was measured for a jump change of the magnetic field to 200 mT as a function of the temperature. The relaxation effects for the acoustic attenuation after switching off the magnetic field and its decrease to the similar value as for clean silicone oil were observed. The change of acoustic attenuation in magneto-rheological fluid versus angle between the wave vector of acoustic waves and direction of the applied magnetic field was measured, too. For the anisotropy measurement are characteristic two local maxima from which results chain orientation in direction of the magnetic field. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1007766 | |
utb.identifier.obdid | 43877824 | |
utb.identifier.scopus | 2-s2.0-85041310418 | |
utb.source | j-scopus | |
dc.date.accessioned | 2018-02-26T10:20:07Z | |
dc.date.available | 2018-02-26T10:20:07Z | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Sedlačík, Michal | |
utb.contributor.internalauthor | Plachý, Tomáš | |
utb.fulltext.affiliation | Jozef Kudelcik - Peter Bury - Stefan Hardon - Michal Sedlacik - Tomas Plachy* * 1 Jozef Kudelcik, 1 Peter Bury, 1 Stefan Hardon, 2 Michal Sedlacik, 2 Tomas Plachy 1 Department of Physics, University of Zilina, Slovakia 2 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Czech Republic E-mail: [email protected] | |
utb.fulltext.dates | - | |
utb.fulltext.references | [1] RODRIGUEZ-LOPEZ, J., SEGURA, L. E., ESPINOSA-FREIJO, F. M.: Ultrasonic Velocity and Amplitude Characterization of Magnetorheological Fluids under Magnetic Fields. Journal of Magnetism and Magnetic Materials, 324, 222-230, 2012. [2] BOSSIS, G., LACIS, S., MEUNIER, A., VOLKOV, O.: Magnetorheological Fluids. Journal of Magnetism and Magnetic Materials, 252, 224-228, 2002. [3] BAEV, A. R., KOROBKO, E. V., NOVIKAVA, Z. A.: Acoustical Properties of Magnetorheological Fluids under Applied Magnetic Field. Journal of Intelligent Material Systems and Structures, 26(14), 1913-1919, 2015. [3] KOROBKO, E. V., NOVIKOVA, Z. A., SERMYAZHKO, E. S., MURASHKEVICH, A. N., ESHENKO, L. S.: Time Stability Studies of Electrorheological Response of Dispersions with Different Types of Charge Carriers. Journal of Intelligent Material Systems and Structures, 26(14), 1782-1788, 2015. [4] BARANWAL, D., DESHMUKH, T. S.: MR-Fluid Technology and Its Application - A Review. International Journal of Emerging Technology and Advanced Engineering, 2(12), 563–569, 2012. [5] DONG, X., MA, N., QI, M., LI, J., GUAN, X., OU, J.: Properties of Magneto-Rheological Fluids Based on Amorphous Micro-Particles. Transactions of Nonferrous Metal Society of China, 22, 2979-2983, 2012. [6] KCIUK, M., TURCZYN, R.: Properties and Application of Magnetorheological Fluids, Journal of Achievements in Materials and Manufacturing Engineering, 18(1-2), 127-130, 2006. [7] SEDLACIK, M., PAVLINEK, V., LEHOCKY, M., JUNKAR, I., VESEL, A.: Plasma-Enhanced Chemical Vapour Deposition of Octaflourocyclobutane onto Carbonyl Iron Particles. Materiali in Tehnologije, 46(1), 43-46, 2012. [8] WANG, Z., FANG, H., LIN, Z., ZHOU, L.: Dynamic Simulation Studies of Structural Formation and Transition in Electro- Magneto-Rheological Fluids. International Journal of Modern Physics B, 15(6, 7), 842-850, 2001. [9] MELLE, S., CALDERON, O. G., RUBIO, M. A., FULLER, G. G.: Microstructure Evolution in Magnetorheological Suspensions Governed by Mason Number. Physical Review E, 68(4), 041501–041511, 2003. [10] HOCKICKO, P., BURY, P., MUNOZ, F., MUNOZ-SENOVILLA, L.: Investigation of Acoustic and Electrical Properties of a LiPO 3 Metaphosphate Glass. Communications - Scientific Letters of the University of Zilina, 16(1), 45-49, 2014. [11] MUNOZ-SENOVILLA, L., BIRESOVA, J., HOCKICKO, P., MUNOZ, F.: Investigation of the Relationships between Acoustic Attenuation and Ionic Conduction of Metaphosphate Glasses. Journal of Non-crystalline Solids, 440, 26-30, 2016. [12] KOLTUNOWICZ, T. N., et al.: Study of Dielectric Function of (FeCoZr)(x)(CaF2)((100-x)) Nanocomposites Produced with a Beam of Argon Ions. Journal of Alloys and Compounds, 650, 262-267, 2015. [13] RAJNAK, M., TIMKO, M., KOPCANSKY, P., PAULOVICOVA, K., TOTHOVA, J., KURIMSKY, J., DOLNIK, B., CIMBALA, R., AVDEEV, M.V., PETRENKO, V.I., FEOKTYSTOV, A.: Structure and Viscosity of a Transformer Oil-Based Ferrofluid under an External Electric Field. Journal of Magnetism and Magnetic Materials, 431, 99-102, 2017. [14] BRAMANTY, M. A., MOTOZAWA, M., TAKUMA, H., FAIZ, M., SAWADA, T.: Experimental Analysis of Clustering Structures in Magnetic and MR Fluids using Ultrasound. Journal of Physics: Conference Series, 149, 012040, 2009. [15] BRAMANTY, M. A., MOTOZAWA, M., SAWADA, T.: Ultrasonic Propagation Velocity in Magnetic and Magnetorheological Fluids Due to an External Magnetic Field. Journal of Physics: Condensed Matter, 22, 324102, 2010. [16] PATEL, J. K., PAREKH, K.: Effect of Carrier and Particle Concentration on Ultrasound Properties of Magnetic Nanofluids. ULTRASONICS, 55, 26-32, 2015. [17] ODENBACH, S.: Ferrofluids-Magnetically Controlled Suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 217, 171-178, 2003. [18] ROZYNEK, Z., et al.: Structuring from Nanoparticles in Oil-Based Ferrofluids. European Physics Journal E, 34(3), 2011. [19] HORNOWSKI, T., JOZEFCZAK, J., KOLODZIEJCZYK, B., TIMKO, M., SKUMIEL, A., RAJNAK, M.: The Effect of Particle Aggregate Shape on Ultrasonic Anisotropy in Concentrated Magnetic Fluids. Journal of Physics D: Applied Physics, 48(17), 175303, 2015. [20] KUDELCIK, J., BURY, P., KOPCANSKY, P., TIMKO, M.: Temperature Effect on Anisotropy of Acoustic Attenuation in Magnetic Fluids Based on Transformer Oil. Communications – Scientific Letters of the University of Zilina, 16(1), 33-38, 2014. [21] SKUMIEL, A.: The Effect of Temperature on the Anisotropy of Ultrasound Attenuation in a Ferrofluid. Journal of Physics D: Applied Physics, 37(22), 3073, 2004. [22] [Online]. Available: https://www.stavochemie.cz/tl/LZK_TL_Lukosiol.pdf [23] Technical Papers of QUANTACHROME: PARTICLE WORD, Edition 3, 2009 [online]. Available: internet: http://www.quantachrome.de/4129-bD1lbg-/de/Home/home.html. [24] DUKHIN, A. S., GOETZ, P. J.: Characterization of Liquids, Nano- and Microparticulates, and Porous Bodies using Ultrasound. ELSEVIER, New York, p. 503, 2002. [25] KUDELCIK, J., BURY, P., DRGA, J., KOPCANSKY, P., ZAVISOVA, V., TIMKO, M.: Comparison of Theories of Anisotropy in Transformer Oil-Based Magnetic Fluids. Advances in Electrical and Electronic Engineering, 11(2), 147-155, 2013. [26] KUDELCIK, J., BURY, P., HARDON, S., SEDLACIK, M., MRLIK, M.: Study of Structural Changes in Magneto-Rheological Fluids by Acoustic Spectroscopy. ELEKTRO 2016, Slovakia, 624-627, 2016. | |
utb.fulltext.sponsorship | This work was supported by project ITMS: 26210120021, co-funded from EU Regional Development Fund. This work Ministry of Education, Youth and Sports – Program NPU I (LO1504). | |
utb.scopus.affiliation | Department of Physics, University of Zilina, Zilina, Slovakia; Centre of Polymer Systems, University Institute, Tomas Bata University, Zlin, Czech Republic | |
utb.fulltext.projects | ITMS 26210120021 | |
utb.fulltext.projects | NPU I (LO1504) |