Kontaktujte nás | Jazyk: čeština English
dc.title | Elastomer testing: The risk of using only uniaxial data for fitting the Mooney-Rivlin hyperelastic-material model | en |
dc.contributor.author | Keerthiwansa, Gustinna Wadu Rohitha | |
dc.contributor.author | Javořík, Jakub | |
dc.contributor.author | Kledrowetz, Jan | |
dc.contributor.author | Nekoksa, Pavel | |
dc.relation.ispartof | Materiali in Tehnologije | |
dc.identifier.issn | 1580-2949 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2018 | |
utb.relation.volume | 52 | |
utb.relation.issue | 1 | |
dc.citation.spage | 3 | |
dc.citation.epage | 8 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Institute of Metals Technology | |
dc.identifier.doi | 10.17222/mit.2017.085 | |
dc.relation.uri | http://mit.imt.si/Revija/mit181.html | |
dc.subject | uniaxial tension | en |
dc.subject | equibiaxial loading | en |
dc.subject | pure shear/planar shear loading | en |
dc.subject | curve fitting | en |
dc.subject | Mooney-Rivlin constitutive model | en |
dc.description.abstract | The Mooney-Rivlin constitutive model is often used for the characterization of hyperelastic rubber-like materials. To obtain the material constants for a model, only a uniaxial-tension-data set is usually used. Though it is regularly used for its easiness of processing data in a simple and practical way, the method is considered to be insufficiently accurate. To analyse the shortcoming of the method, a detailed examination was done with the Mooney-Rivlin two-parameter model. This paper discusses the variations related to three basic load curves, i.e., uniaxial, equibiaxial and pure-shear curves. For a visual observation of the fitted-data dispersion, two data-fitting cases were considered. The first one was the data fitting only through uniaxial data while the second one was a combination of uniaxial and pure-shear experimental-data curve fitting. A detailed one-to-one comparison of the curves was done to achieve an accurate estimation of the variations. | en |
utb.faculty | Faculty of Technology | |
dc.identifier.uri | http://hdl.handle.net/10563/1007759 | |
utb.identifier.obdid | 43877342 | |
utb.identifier.scopus | 2-s2.0-85041604136 | |
utb.identifier.wok | 000426282800001 | |
utb.source | j-scopus | |
dc.date.accessioned | 2018-02-26T10:20:06Z | |
dc.date.available | 2018-02-26T10:20:06Z | |
dc.description.sponsorship | TBU in Zlin [IGA/FT/2017/002] | |
dc.rights.uri | http://mit.imt.si/ | |
dc.rights.access | openAccess | |
utb.contributor.internalauthor | Keerthiwansa, Gustinna Wadu Rohitha | |
utb.contributor.internalauthor | Javořík, Jakub | |
utb.contributor.internalauthor | Kledrowetz, Jan | |
utb.contributor.internalauthor | Nekoksa, Pavel | |
utb.fulltext.affiliation | Rohitha Keerthiwansa, Jakub Javorik, Jan Kledrowetz, Pavel Nekoksa Tomas Bata University in Zlín, Faculty of Technology, Vavreckova 275, 760 01 Zlín, Czech Republic [email protected] | |
utb.fulltext.dates | Prejem rokopisa – received: 2017-06-27; sprejem za objavo – accepted for publication: 2017-10-20 | |
utb.fulltext.references | 1 E. I. Arruda, M. C. Boyce, A three-dimensional constitutive model for the large strength behaviour of rubber elastic materials, J. Mech. Phys. Solids, 41 (1993) 2, 389–412, doi:10.1016/0022-5096(93) 90013-6 2 L. Hoss, R. J. Marczak, A new constitutive model for rubber-like materials, Mecánica Computacional, XXIX (2010), 2759–2773 3 G. L. Bradley, P. C. Chang, G. B. Mckenna, Rubber Modeling Using Uniaxial Test Data, J. Applied Polymer Science, 81 (2001), 837–848 4 G. Marckmann, E. Verron, P.-E. Austreii, L. Kari, Efficiency of hyperelastic models for rubber-like materials, Rubber Chemistry and Technology, American Chemical Society, 79 (2005) 5, 835–858 5 C. Vlad, G. Prisacaru, D. Olaru, FEM Simulation on Uniaxial Tension of Hyperelastic Elastomers, Applied Mechanics and Materials, 659 (2014), 57–62, doi:10.4028/www.scientific.net/AMM.659.57 6 R. Kottner, J. Kocáb, J. Heczko, J. Krystek, Investigation of the mechanical properties of a cork rubber composite, Materials and Technology, 50 (2016) 4, 579–583, doi:10.17222/mit.2015.172 7 M. Sasso, G. Palmieri, G. Chiappini, D. Amodio, Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods, Polymer Testing, 27 (2008) 8, 995–1004, doi:10.1016/j.polymertesting.2008.09.001 8 L. R. G. Treloar, Stress-strain data for vulcanised rubber under various types of deformation, Trans. Faraday Soc., 40 (1944), 59–70, doi:10.1039/TF9444000059 9 J. Javorik, D. Manas, The specimen optimisation for the equibiaxial test of elastomers, https://www.researchgate.net/publication/261844574, 2016 10 M. Rachik, F. Schmidt, N. Reuge, Y. Le Maoult, F. Abbe, Elastomer biaxial characterization using bubble inflation technique, Numerical investigation of some constitutive models, J. Polymer Engineering and Science, 41 (2001) 3, 532–541, doi:10.1002/pen.10750 11 A. Bojtos, G. Abraham, Optical measuring system for equibiaxial test of hyperelastic rubber-like materials, Youth symposium on experimental solid mechanics, (2010), 170–173 12 M. Shahzad, A. Kamran, M. Z. Siddiqui, M. Farhan, Mechanical characterization and FE modelling of a hyperelastic material, Materials Research, 18 (2015) 5, 918–924, doi:10.1590/1516-1439.320414 13 J. Gough, A. H. Muhr, A. G. Thomas, Material characterisation for finite element analysis of rubber components, J. Rubb. Res., 1 (1998) 4, 222–239 14 A. F. Bower, Applied Mechanics of Solids, CRC Press, 2009 15 S. C. Chapra, Applied Numerical Methods with MATLAB for engineers and scientists, McGraw-Hill Publishers, 2012 | |
utb.fulltext.sponsorship | This work and the project were realised with the financial support of an internal grant of the TBU in Zlin, No. IGA/FT/2017/002, funded from the resources for the specific university research. | |
utb.scopus.affiliation | Tomas Bata University in Zlín, Faculty of Technology, Vavreckova 275, Zlín, Czech Republic | |
utb.fulltext.projects | IGA/FT/2017/002 |