Publikace UTB
Repozitář publikační činnosti UTB

Enhancement of the mechanical properties of a polylactic acid/flax fiber biocomposite by WPU, WPU/starch, and TPS polyurethanes using coupling additives

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Enhancement of the mechanical properties of a polylactic acid/flax fiber biocomposite by WPU, WPU/starch, and TPS polyurethanes using coupling additives en
dc.contributor.author Miskolczi, Norbert
dc.contributor.author Sedlařík, Vladimír
dc.contributor.author Kucharczyk, Pavel
dc.contributor.author Riegel, E.
dc.relation.ispartof Mechanics of Composite Materials
dc.identifier.issn 0191-5665 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 53
utb.relation.issue 6
dc.citation.spage 791
dc.citation.epage 800
dc.type article
dc.language.iso en
dc.publisher Springer
dc.identifier.doi 10.1007/s11029-018-9704-1
dc.relation.uri https://link.springer.com/article/10.1007/s11029-018-9704-1
dc.subject biodegradation en
dc.subject castor oil en
dc.subject coupling en
dc.subject starch en
dc.subject waterborne polyurethane en
dc.description.abstract This work is addressed to the synthesis of bio-based polymers and investigation of their application in a flax-fiber-reinforced polylactic acid. Polyurethane polymers were synthesized from polyphenyl-methane-diisocyanate, poly (ethylene oxide) glycol, and ricinoleic acid, and their structure was examined by the Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. It was established that the introduction of flax fibers and different compatibilizers into the polymers improved their mechanical properties. A vinyl-trimetoxy-silane and polyalkenyl-polymaleic-anhydride derivative with a high acid number produced the best effect on the properties, but samples without additives had the highest water absorption capacity. SEM micrographs showed a good correlation between the morphology of fracture structure of the composites and the mechanical properties of flax fibers. © 2018, Springer Science+Business Media, LLC, part of Springer Nature. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1007739
utb.identifier.obdid 43879674
utb.identifier.scopus 2-s2.0-85040728475
utb.identifier.wok 000422945200008
utb.source j-scopus
dc.date.accessioned 2018-02-26T10:20:04Z
dc.date.available 2018-02-26T10:20:04Z
dc.description.sponsorship LE12002, MoE, Ministry of Education, Government of the People's Republic of Bangladesh; LO1504, MoE, Ministry of Education, Government of the People's Republic of Bangladesh
dc.description.sponsorship Ministry of Education, Youth, and Sports of the Czech Republic [LE12002, LO1504]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Sedlařík, Vladimír
utb.contributor.internalauthor Kucharczyk, Pavel
utb.fulltext.affiliation N. Miskolczi, 1* V. Sedlarik, 2 P. Kucharczyk, 2 and E. Riegel 1 1 University of Pannonia, Faculty of Engineering, Institute of Chemical Engineering and Process Engineering, MOL Department of Hydrocarbon & Coal Processing, H-8200, Veszprém, Egyetem u. 10, Hungary 2 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, tr. T. Bati 5678, 76001 Zlín, Czech Republic * Corresponding author; tel.: 36 88 624 000; fax: 36 88 624 520; e-mail: [email protected]
utb.fulltext.dates Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 53, No. 6, pp. 1137-1152, November- Decemer, 2017. Original article submitted January 24, 2017.
utb.fulltext.references 1. M. S. Lopes, A. L. Jardini, and R. M. Filho, “Synthesis and characterizations of pPoly (lactic acid) by ring-opening polymerization for biomedical applications,” Chem. Eng. Trans., 38, 331-336 (2014). 2. F. S. Guner, Y. Yag, and A. T. Erciyes, “Polymers from triglyceride oils,” Prog. Polym. Sci. 31, 633-670 (2006). 3. J. C. Ronda, G. Lligadas, M.Galià, and V. Cádiz, “Vegetable oils as platform chemicals for polymer synthesis,” Eur. J. Lipid Sci. Technol., 113, 46-58 (2011). 4. G. T. Howard, “Biodegradation of polyurethane: A review,” Int. Biodeter. Biodegr., 49, 245-252 (2002). 5. C. W. Chang and K. T. Lu, “Natural castor oil based 2-package waterborne polyurethane wood coatings,” Progress Org. Coat., 75, 35-443 (2012). 6. J. Zou, F. Zhang, J. Huang, P.R. Chang, Z. Su, and J. Yu, “Effects of starch nanocrystals on structure and properties of waterborne polyurethane-based composites,” Carbohyd. Polym., 85, 824-831 (2011). 7. T. Travinskaya, Yu. Savelyev, and E. Mishchuk, “Waterborne polyurethane-based starch-containing materials: Preparation, properties and study of degradability,” Polym. Degrad. Stabil., 101, 102-108 (2014). 8. Y. Wang, H. Tian, and L. Zhang, “Role of starch nanocrystals and cellulose whiskers in synergistic reinforcement of waterborne polyurethane,” Carbohyd. Polym., 80, 665-671(2010). 9. Y. Lu, L. Tighzert, P. Dole, and D. Erre, “Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources,” Polymer, 46, 9863-9870 (2005). 10. S. Oprea, “Dependence of fungal biodegradation of PEG/castor oil-based polyurethane elastomers on the hard-segment structure,” Polym. Degrad. Stabil., 95, 2396-2404 (2010). 11. S. J. Lee and B. K. Kim, “Covalent incorporation of starch derivative into waterborne polyurethane for biodegradability,” Carbohyd. Polym., 87, 1803-1809 (2011). 12. H. Sardon, L. Irusta, A. González, and M. J. Fernández-Berridi, “Waterborne hybrid polyurethane coatings functionalized with (3-aminopropyl)triethoxysilane: Adhesion properties,” Prog. Org. Coat., 76, 1230-1235 (2013). 13. Z. Ge and Y. Luo, “Synthesis and characterization of siloxane-modified two-component waterborne polyurethane,” Prog. Org. Coat., 76, 1522-1526 (2013). 14. R. T. Darby and A. M. Kaplan, “Fungal susceptibility of polyurethanes,” Appl. Microbiol., 16, 900-905 (1968). 15. H. Yeganeh and P. Hojati-Talemi, “Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly(ethylene glycol),” Polym. Degrad. Stabil., 92, 480-489 (2007). 16. M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, “Chemical treatments on plant-based natural fiber reinforced polymer composites: An overview,” Composites: Part B-Eng. 43, 2883-2892 (2012). 17. M. A. L. Manchado, M. Arroyo, J. Biagiotti, and J. M. Kenny, “Enhancement of mechanical properties and interfacial adhesion of PP/EPDM/flax fiber composites using maleic anhydride as a compatibilizer,” J. Appl. Polym. Sci., 90, 2170-2178 (2003). 18. L. Y. Mwaikambo and M. P. Ansell, “The effect of chemical treatment on the properties of hemp, sisal jute and kapok for composite reinforcement,” Die Angewandte Makromolekulare Chemie, 272, 108-116 (1999). 19. O. Faruk, A. K. Bledzki, Hans-Peter Fink, and Mohini Sain, “Biocomposites reinforced with natural fibers: 2000-2010,” Prog. Polym. Sci., 37, 1552-1596 (2012). 20. R. Kumar; M. K. Yakabu; and R. D. Anandjiwala, “Effect of montmorillonite clay on flax fabric reinforced poly lactic acid composites with amphiphilic additives,” Composites: Part A-Appl Sci., 41, 1620-1627 (2010). 21. A. Le Duigou, I. Pillin, A. Bourmaud, P. Davies, and C. Baley, “Effect of recycling on mechanical behaviour of biocompostable flax/poly(L lactide) composites,” Composites: Part A-Appl S., 39, 1471-1478 (2008). 22. B. Bax and J. Müssig, “Impact and tensile properties of PLA/Cordenka and PLA/flax composites,” Compos. Sci. Technol., 68, 1601-1607 (2008). 23. N. Miskolczi, H. Szakacs, V. Sedlarik, P. Kucharczyk, and E. Riegel, “Production of acrylonitrile butadiene styrene/high-density polyethylene composites from waste sources by using coupling agents,” Mech. Compos. Mater., 50, No. 3, 377-386 (2014). 24. P. Kucharczyk, V. Sedlarik, N. Miskolczi, H. Szakacs, and T. Kitano, “Properties enhancement of partially biodegradable polyamide/polylactide blends through compatibilization with novel polyalkenyl-poly-maleic-anhydride-based additives,” J. Reinf. Plast. Comp., 31, 189-202 (2012). 25. H.-Y. Mi, M. R. Salick, X. Jing, B. R. Jacques, W. C. Crone, X.-F. Peng, and L.-S. Turng, “Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding,” Mater. Sci. Eng. C Mater. Biol. Appl. C, 33, 4767-4776 (2013). 26. B. Ayana, S. Suin, and B. B. Khatua, “Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid) (PLA)/clay nanocomposites using unmodified nanoclay,” Carbohyd. Polym., 110, 430-439 (2014).
utb.fulltext.sponsorship V. Sedlarik and P. Kuchraczyk would like to acknowledge the financial support provided by the Ministry of Education, Youth, and Sports of the Czech Republic (Grants Nos. LE12002 and LO1504).
utb.scopus.affiliation University of Pannonia, Faculty of Engineering, Institute of Chemical Engineering and Process Engineering, MOL Department of Hydrocarbon & Coal Processing, Egyetem u. 10, Veszprém, Hungary; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, tr. T. Bati 5678, Zlín, Czech Republic
utb.fulltext.projects LE12002
utb.fulltext.projects LO1504
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam