Publikace UTB
Repozitář publikační činnosti UTB

Fractional order stability of systems

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Fractional order stability of systems en
dc.contributor.author Senol, Bilal
dc.contributor.author Matušů, Radek
dc.contributor.author Gül, Emine
dc.relation.ispartof IDAP 2017 - International Artificial Intelligence and Data Processing Symposium
dc.identifier.isbn 978-1-5386-1880-6
dc.date.issued 2017
dc.event.title 2017 International Artificial Intelligence and Data Processing Symposium, IDAP 2017
dc.event.location Malatya
utb.event.state-en Turkey
utb.event.state-cs Turecko
dc.event.sdate 2017-09-16
dc.event.edate 2017-09-17
dc.type conferenceObject
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.identifier.doi 10.1109/IDAP.2017.8090274
dc.relation.uri http://ieeexplore.ieee.org/abstract/document/8090274/
dc.subject Fractional order en
dc.subject Frequency properties en
dc.subject Interlacing en
dc.subject Monotonic phase increment en
dc.subject Stability analysis en
dc.subject Systems en
dc.description.abstract This paper investigates and offers some stability analysis methods for systems of non-integer orders. Well known analysis methods such as Hurwitz, interlacing property, monotonic phase increment property are reconsidered in a fractional order way of thinking. A method to find the roots of the so-called fractional order polynomials is proposed and Hurwitz-like stability of the pseudo-polynomials is investigated. Effectiveness of the interlacing property and outcomes of the monotonic phase increment property for fractional order case is shown. Results are comparatively proved and illustrated clearly. © 2017 IEEE. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1007721
utb.identifier.obdid 43876980
utb.identifier.scopus 2-s2.0-85039897687
utb.identifier.wok 000426868700114
utb.source d-scopus
dc.date.accessioned 2018-02-26T10:20:01Z
dc.date.available 2018-02-26T10:20:01Z
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)]; European Regional Development Fund under the project CEBIA-Tech [CZ.1.05/2.1.00/03.0089]
utb.contributor.internalauthor Matušů, Radek
utb.fulltext.affiliation Bilal Şenol Computer Engineering Department Inonu University Malatya, TURKEY [email protected] Radek Matušů Faculty of Applied Informatics Tomas Bata University in Zlin Zlin, Czech Republic [email protected] Emine Gül Computer Engineering Department Inonu University Malatya, Turkey [email protected]
utb.fulltext.dates -
utb.fulltext.references [1] R. Caponetto, G. Dongola, L. Fortuna and I. Petras, Fractional Order Systems, Modeling and Control Applications, World Scientific, Singapore, 2010. [2] Baleanu, Dumitru, et al., Fractional calculus: models and numerical methods. Vol. 5. World Scientific, 2016. [3] Azar, Ahmad Taher, Sundarapandian Vaidyanathan, and Adel Ouannas, eds. Fractional order control and synchronization of chaotic systems. Vol. 688. Springer, 2017. [4] C. A. Monje, Y. Q. Chen, B. M. Vinagre, X. Dingyu, V. Feliu, Fractional-order systems and controls, Springer, New York, 2010. [5] I. Podlubny, Fractional-order systems and PI λ D μ controllers, IEEE Transactions on Automatic Control, vol. 44 (1), pp. 208–214, 1999. [6] R. L. Magin, Fractional calculus in bioengineering: A tool to model complex dynamics, 13th International Carpathian Control Conference (ICCC), 2012. [7] R. E. Gutiérrez, J. M. Rosário, J. T. Machado, Fractional Order Calculus: Basic Concepts and Engineering Applications, Mathematical Problems in Engineering, 2010. [8] F. J. V. Parada, J. A. O. Tapia, J. A. Ramirez, Effective medium equations for fractional Ficks law in porous media, Physica, vol. 373, pp. 339–53, 2007. [9] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. [10] R. Matušů, and B. Şenol, Two approaches to description and robust stability analysis of fractional order uncertain systems, IEEE Conference on Control Applications (CCA), 2016. [11] M. H. T. Alshbool, et al., Solution of fractional-order differential equations based on the operational matrices of new fractional Bernstein functions. Journal of King Saud University-Science vol. 29.1, pp. 1-18, 2007. [12] V. E. Tarasov, Geometric interpretation of fractional-order derivative, Fractional Calculus and Applied Analysis, vol. 19.5, pp. 1200-1221, 2016. [13] A. Bolandtalat, E. Babolian and H. Jafari, Numerical solutions of multi-order fractional differential equations by Boubaker Polynomials, Open Physics, vol. 14.1, pp. 226-230, 2016. [14] I. Petras, I. Podlubny, P. O'Leary, L. Dorcak, B. M. Vinagre, Analogue Realization of Fractional Order Controllers, Technical University of Kosice, Kosice, 2002. [15] Y. Q. Chen, I. Petras, X. Dingyu, Fractional order control - A tutorial, American Control Conference (ACC), 2009. [16] R. Caponetto, G. Dongola, A numerical approach for computing stability region of FO-PID controller, Journal of the Franklin Institute,vol. 350 (4), pp. 871-889, 2013. [17] L. Zeng, P. Cheng, L. Wang, W. Yong, Robust stability analysis for a class of FOS with uncertain parameters, Journal of the Franklin Institute, vol. 348 (6), pp. 1101–1113, 2011. [18] B. Senol, C. Yeroglu, N. Tan, Analysis of Fractional Order Polynomials Using Hermite-Biehler Theorem, 2014 International Conference on Fractional Differentiation and its Applications (ICFDA), 2014. [19] B. Senol, C. Yeroglu, Computation of the value set of fractional order uncertain polynomials: A 2q convex parpolygonal approach, 2012 IEEE International Conference on Control Applications (CCA), 2012. [20] B. Senol, C. Yeroglu, Robust Stability Analysis of Fractional Order Uncertain Polynomials, 2012 International Conference on Fractional Differentiation and its Applications (ICFDA), 2012. [21] S. Das, P. Indranil, Fractional order signal processing: introductory concepts and applications. Springer Science & Business Media, 2011. [22] B. Senol, A. Ates, B. B. Alagoz, C. Yeroglu, A numerical investigation for robust stability of fractional-order uncertain systems, ISA Transactions, vol. 53 (2), pp. 189-198, 2014. [23] F. Merrikh-Bayat, M. Afshar, M. Karimi-Ghartemani, Extension of the root-locus method to a certain class of fractional-order systems. ISA Transactions, vol. 48(1), pp. 48–53, 2009. [24] A.G. Radwan, A. M. Soliman, A. S. Elwakil and A. Sedeek, On the stability of linear systems with fractional-order elements, Chaos, Solitons & Fractals, vol. 40 (5), pp. 2317-2328, 2009. [25] B. Senol, C. Yeroglu, N. Tan, Analysis of Fractional Order Polynomials Using Hermite-Biehler Theorem, 2014 International Conference on Fractional Differetiation and its Applications (ICFDA), 2014.
utb.fulltext.sponsorship The second author (RM) of this work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme project No. LO1303 (MSMT Ǧ 7778/2014) and by the European Regional Development Fund under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089.
utb.scopus.affiliation Computer Engineering Department, Inonu University, Malatya, Turkey; Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic
utb.fulltext.projects LO1303 (MSMT Ǧ 7778/2014)
utb.fulltext.projects CZ.1.05/2.1.00/03.0089
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam