Kontaktujte nás | Jazyk: čeština English
dc.title | Fractional order stability of systems | en |
dc.contributor.author | Senol, Bilal | |
dc.contributor.author | Matušů, Radek | |
dc.contributor.author | Gül, Emine | |
dc.relation.ispartof | IDAP 2017 - International Artificial Intelligence and Data Processing Symposium | |
dc.identifier.isbn | 978-1-5386-1880-6 | |
dc.date.issued | 2017 | |
dc.event.title | 2017 International Artificial Intelligence and Data Processing Symposium, IDAP 2017 | |
dc.event.location | Malatya | |
utb.event.state-en | Turkey | |
utb.event.state-cs | Turecko | |
dc.event.sdate | 2017-09-16 | |
dc.event.edate | 2017-09-17 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.identifier.doi | 10.1109/IDAP.2017.8090274 | |
dc.relation.uri | http://ieeexplore.ieee.org/abstract/document/8090274/ | |
dc.subject | Fractional order | en |
dc.subject | Frequency properties | en |
dc.subject | Interlacing | en |
dc.subject | Monotonic phase increment | en |
dc.subject | Stability analysis | en |
dc.subject | Systems | en |
dc.description.abstract | This paper investigates and offers some stability analysis methods for systems of non-integer orders. Well known analysis methods such as Hurwitz, interlacing property, monotonic phase increment property are reconsidered in a fractional order way of thinking. A method to find the roots of the so-called fractional order polynomials is proposed and Hurwitz-like stability of the pseudo-polynomials is investigated. Effectiveness of the interlacing property and outcomes of the monotonic phase increment property for fractional order case is shown. Results are comparatively proved and illustrated clearly. © 2017 IEEE. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1007721 | |
utb.identifier.obdid | 43876980 | |
utb.identifier.scopus | 2-s2.0-85039897687 | |
utb.identifier.wok | 000426868700114 | |
utb.source | d-scopus | |
dc.date.accessioned | 2018-02-26T10:20:01Z | |
dc.date.available | 2018-02-26T10:20:01Z | |
dc.description.sponsorship | Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)]; European Regional Development Fund under the project CEBIA-Tech [CZ.1.05/2.1.00/03.0089] | |
utb.contributor.internalauthor | Matušů, Radek | |
utb.fulltext.affiliation | Bilal Şenol Computer Engineering Department Inonu University Malatya, TURKEY [email protected] Radek Matušů Faculty of Applied Informatics Tomas Bata University in Zlin Zlin, Czech Republic [email protected] Emine Gül Computer Engineering Department Inonu University Malatya, Turkey [email protected] | |
utb.fulltext.dates | - | |
utb.fulltext.references | [1] R. Caponetto, G. Dongola, L. Fortuna and I. Petras, Fractional Order Systems, Modeling and Control Applications, World Scientific, Singapore, 2010. [2] Baleanu, Dumitru, et al., Fractional calculus: models and numerical methods. Vol. 5. World Scientific, 2016. [3] Azar, Ahmad Taher, Sundarapandian Vaidyanathan, and Adel Ouannas, eds. Fractional order control and synchronization of chaotic systems. Vol. 688. Springer, 2017. [4] C. A. Monje, Y. Q. Chen, B. M. Vinagre, X. Dingyu, V. Feliu, Fractional-order systems and controls, Springer, New York, 2010. [5] I. Podlubny, Fractional-order systems and PI λ D μ controllers, IEEE Transactions on Automatic Control, vol. 44 (1), pp. 208–214, 1999. [6] R. L. Magin, Fractional calculus in bioengineering: A tool to model complex dynamics, 13th International Carpathian Control Conference (ICCC), 2012. [7] R. E. Gutiérrez, J. M. Rosário, J. T. Machado, Fractional Order Calculus: Basic Concepts and Engineering Applications, Mathematical Problems in Engineering, 2010. [8] F. J. V. Parada, J. A. O. Tapia, J. A. Ramirez, Effective medium equations for fractional Ficks law in porous media, Physica, vol. 373, pp. 339–53, 2007. [9] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. [10] R. Matušů, and B. Şenol, Two approaches to description and robust stability analysis of fractional order uncertain systems, IEEE Conference on Control Applications (CCA), 2016. [11] M. H. T. Alshbool, et al., Solution of fractional-order differential equations based on the operational matrices of new fractional Bernstein functions. Journal of King Saud University-Science vol. 29.1, pp. 1-18, 2007. [12] V. E. Tarasov, Geometric interpretation of fractional-order derivative, Fractional Calculus and Applied Analysis, vol. 19.5, pp. 1200-1221, 2016. [13] A. Bolandtalat, E. Babolian and H. Jafari, Numerical solutions of multi-order fractional differential equations by Boubaker Polynomials, Open Physics, vol. 14.1, pp. 226-230, 2016. [14] I. Petras, I. Podlubny, P. O'Leary, L. Dorcak, B. M. Vinagre, Analogue Realization of Fractional Order Controllers, Technical University of Kosice, Kosice, 2002. [15] Y. Q. Chen, I. Petras, X. Dingyu, Fractional order control - A tutorial, American Control Conference (ACC), 2009. [16] R. Caponetto, G. Dongola, A numerical approach for computing stability region of FO-PID controller, Journal of the Franklin Institute,vol. 350 (4), pp. 871-889, 2013. [17] L. Zeng, P. Cheng, L. Wang, W. Yong, Robust stability analysis for a class of FOS with uncertain parameters, Journal of the Franklin Institute, vol. 348 (6), pp. 1101–1113, 2011. [18] B. Senol, C. Yeroglu, N. Tan, Analysis of Fractional Order Polynomials Using Hermite-Biehler Theorem, 2014 International Conference on Fractional Differentiation and its Applications (ICFDA), 2014. [19] B. Senol, C. Yeroglu, Computation of the value set of fractional order uncertain polynomials: A 2q convex parpolygonal approach, 2012 IEEE International Conference on Control Applications (CCA), 2012. [20] B. Senol, C. Yeroglu, Robust Stability Analysis of Fractional Order Uncertain Polynomials, 2012 International Conference on Fractional Differentiation and its Applications (ICFDA), 2012. [21] S. Das, P. Indranil, Fractional order signal processing: introductory concepts and applications. Springer Science & Business Media, 2011. [22] B. Senol, A. Ates, B. B. Alagoz, C. Yeroglu, A numerical investigation for robust stability of fractional-order uncertain systems, ISA Transactions, vol. 53 (2), pp. 189-198, 2014. [23] F. Merrikh-Bayat, M. Afshar, M. Karimi-Ghartemani, Extension of the root-locus method to a certain class of fractional-order systems. ISA Transactions, vol. 48(1), pp. 48–53, 2009. [24] A.G. Radwan, A. M. Soliman, A. S. Elwakil and A. Sedeek, On the stability of linear systems with fractional-order elements, Chaos, Solitons & Fractals, vol. 40 (5), pp. 2317-2328, 2009. [25] B. Senol, C. Yeroglu, N. Tan, Analysis of Fractional Order Polynomials Using Hermite-Biehler Theorem, 2014 International Conference on Fractional Differetiation and its Applications (ICFDA), 2014. | |
utb.fulltext.sponsorship | The second author (RM) of this work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme project No. LO1303 (MSMT Ǧ 7778/2014) and by the European Regional Development Fund under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089. | |
utb.scopus.affiliation | Computer Engineering Department, Inonu University, Malatya, Turkey; Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic | |
utb.fulltext.projects | LO1303 (MSMT Ǧ 7778/2014) | |
utb.fulltext.projects | CZ.1.05/2.1.00/03.0089 |