Kontaktujte nás | Jazyk: čeština English
dc.title | Poisson effect enhances compression force sensing with oxidized carbon nanotube network/polyurethane sensor | en |
dc.contributor.author | Slobodian, Petr | |
dc.contributor.author | Říha, Pavel | |
dc.contributor.author | Olejník, Robert | |
dc.contributor.author | Matyáš, Jiří | |
dc.contributor.author | Kovář, Michal | |
dc.relation.ispartof | Sensors and Actuators, A: Physical | |
dc.identifier.issn | 0924-4247 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2018 | |
utb.relation.volume | 271 | |
dc.citation.spage | 76 | |
dc.citation.epage | 82 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.identifier.doi | 10.1016/j.sna.2017.12.035 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0924424716308834 | |
dc.subject | Compression force sensor | en |
dc.subject | Carbon nanotubes | en |
dc.subject | Polyurethane | en |
dc.subject | Polymer composite | en |
dc.subject | Nano-cracks | en |
dc.description.abstract | Poisson effect when a sensor made of multi-walled carbon nanotube network embedded in the elastic polyurethane was compressed in one direction and expanded in the other two directions perpendicular to the direction of compression several fold enhanced the sensing owing to nano-sized cracks of the network. The composite sensitivity was further multiplicatively enhanced by KMnO4 oxidation of carbon nanotubes. As an example of the composite use as a compression sensor, a pressure on the shoe sole was monitored as well as a ball bullet impact on the sensor. © 2018 Elsevier B.V. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1007704 | |
utb.identifier.obdid | 43879673 | |
utb.identifier.scopus | 2-s2.0-85040243881 | |
utb.identifier.wok | 000426331800010 | |
utb.identifier.coden | SAAPE | |
utb.source | j-scopus | |
dc.date.accessioned | 2018-02-26T10:19:51Z | |
dc.date.available | 2018-02-26T10:19:51Z | |
dc.description.sponsorship | Ministry of Education, Youth and Sports of the Czech Republic - Program NPU I [LO1504]; Operational Program Research and Development for Innovations - European Regional Development Fund (ERDF); national budget of the Czech Republic [CZ.1.05/2.1.00/19.0409]; TBU in Zlin [IGA/CPS/2015/001]; Institute of Hydrodynamic [sAV0Z20600510] | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Slobodian, Petr | |
utb.contributor.internalauthor | Olejník, Robert | |
utb.contributor.internalauthor | Matyáš, Jiří | |
utb.contributor.internalauthor | Kovář, Michal | |
utb.fulltext.affiliation | Petr Slobodian a,∗ , Pavel Riha b , Robert Olejnik a , Jiri Matyas a , Michal Kovar a a Centre of Polymer Systems, University Institute, Tomas Bata University, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic b Institute of Hydrodynamics, Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic ∗ Corresponding author. E-mail address: [email protected] (P. Slobodian). | |
utb.fulltext.dates | Received 8 November 2016 Received in revised form 27 November 2017 Accepted 15 December 2017 | |
utb.fulltext.references | [1] C. Mattmann, F. Clemens, G. Tröster, Sensor for measuring strain in textile, Sensors 8 (2008) 3719–3732. [2] R.H. Kim, D.H. Kim, J.L. Xiao, B.H. Kim, S.I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z.J. Liu, V. Malyarchuk, D.G. Kim, A.P. Le, R.G. Nuzzo, D.L. Kaplan, F.G. Omenetto, Y.G. Huang, Z. Kang, J.A. Rogers, Waterproof AllnGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics, Nat. Mater. 9 (2010) 929–937. [3] L.M. Castano, A.B. Flatau, Smart fabric sensors and e-textile technologies: a review, Smart Mater. Struct. 23 (2014), 053001. [4] I. Kang, M.J. Schulz, J.H. Kim, V. Shanov, D. Shi, A carbon nanotube strain sensor for structural health monitoring, Smart Mater. Struct. 15 (2006) 737–748. [5] L. Cai, L. Song, P.S. Luan, Q. Zhang, N. Zhang, Q.Q. Gao, D. Zhao, X. Zhang, M. Tu, F. Yang, W.B. Zhou, Q.X. Fan, J. Luo, W.Y. Zhou, P.M. Ajayan, S.S. Xie, Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection, Sci. Rep. 3 (2013), 3048. [6] R. Rahimi, M. Ochoa, W. Yu, B. Ziaie, Highly stretchable and sensitive unidirectional strain sensor via laser carbonization, ACS Appl. Mater. Interfaces 7 (2015) 4463–4470. [7] Y. Kim, Y. Kim, C. Lee, S. Kwon, Thin polysilicon gauge for strain measurement of structural elements, IEEE Sens. J. 10 (2010) 1320–1327. [8] L.in Lin, Siyao Liu, Qi Zhang, Xiaoyu Li, Mizhi Ji, Hua Deng, Qiang Fu, Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer, ACS Appl. Mater. Interfaces 5 (2013) 5815–5824. [9] C. Lee, L. Jug, E. Meng, High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors, Appl. Phys. Lett. 102 (2013), 183511. [10] K. Takei, Z.B. Yu, M. Zheng, H. Ota, T. Takahashi, A. Javey, Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 1703–1707. [11] P. Slobodian, P. Riha, P. Saha, A highly-deformable composite composed of an entangled network of electrically-conductive carbon-nanotubes embedded in elastic polyurethane, Carbon 50 (2012) 3446–3453. [12] P. Slobodian, P. Riha, R. Olejnik, U. Cvelbar, P. Saha, Enhancing effect of KMnO4 oxidation of carbon nanotubes network embedded in elastic polyurethane on overall electro-mechanical properties of composite, Compos. Sci. Technol. 81 (2013) 54–60. [13] O. Kanoun, C. Muller, A. Benchirouf, A. Sanli, T.N. Dinh, A. Al-Hamry, L. Bu, C. Gerlach, A. Bouhamed, Flexible carbon nanotube films for high performance strain sensors, Sensors 14 (2014) 10042–10071. [14] S. Tadakaluru, W. Thongsuwan, P. Singjai, Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber, Sensors 14 (2014) 868–876. [15] T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. Futaba, K. Hata, A stretchable carbon nanotube strain sensor for human-motion detection, Nat. Nanotechnol. 6 (2011) 296–301. [16] M. Hin, J. Oh, M. Lima, M. Kozlov, S. Kim, R. Baughman, Elastomeric conductive composites based on carbon nanotube forests, Adv. Mater. 22 (2010) 2663–2667. [17] D. Wang, H.Y. Li, M.F. Li, H.Q. Jiang, M. Xia, Z. Zhou, Stretchable conductive polyurethane elastomer in situ polymerized with multi-walled carbon nanotubes, J. Mater. Chem. C 1 (2013) 2744–2749. [18] H. Liu, W. Huang, J. Gao, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, Z. Guo, Piezoresistive behavior of porous carbon nanotube-thermoplastic polyurethane conductive nanocomposites with ultrahigh compressibility, Appl. Phys. Lett. 108 (2016), 011904. [19] R. Rizvi, H. Naguib, Porosity and composition dependence on electrical and piezoresistive properties of thermoplastic polyurethane nanocomposites, J. Mater. Res. 28 (2013) 2415–2425. [20] P. Slobodian, P. Riha, P. Saha, A highly-deformable composite composed of an entangled network of electrically-conductive carbon-nanotubes embedded in elastic polyurethane, Carbon 50 (2012) 3446–3453. [21] G.J. Gallo, E.T. Thostenson, Electrical characterization and modeling of carbon nanotube and carbon fiber self-sensing composites for enhanced sensing of microcracks, Mater. Today Comm. 3 (2015) 17–26. [22] Y. Huang, W.H. Wang, Z.G. Sun, Y. Wang, P. Liu, C.X. Liu, A multilayered flexible piezoresistive sensor for wide-ranged pressure measurement based on CNTs/CB/SR composite, J. Mater. Res. 30 (2015) 1869–1875. [23] C.Y. Li, E.T. Thostenson, T.W. Chou, Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites, Appl. Phys. Lett. 91 (2007), 223114. [24] N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, Y.L. Liu, H. Fukunaga, Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor, Carbon 48 (2010) 680–687. [25] P. Slobodian, P. Riha, A. Lengalova, P. Saha, Compressive stress-electrical conductivity characteristics of multiwall carbon nanotube networks, J. Mater. Sci. 46 (2011) 3186–3190. [26] C.S. Chern, L.J. Wu, Microemulsion polymerization of styrene stabilized by sodium dodecyl sulfate and short-chain alcohols, J. Polym. Sci. A Polym. Chem. 39 (2001) 3199–3210. [27] P. Slobodian, P. Riha, R. Olejnik, R. Benlikaya, Analysis of sensing properties of carbon thermoelectric vapor sensor made of carbon nanotubes/ethylene-octene copolymer composites, Carbon 110 (2016) 257–266. [28] C.S. Yeh, A Study of Nanostructure and Properties of Mixed Nanotube Buckypaper Materials: Fabrication, Process Modeling Characterization and Property Modeling. PhD Thesis, The Florida State University, USA, 2007. [29] A. Allaoui, S.V. Hoa, P. Evesque, J. Bai, Electronic transport in carbon nanotube tangles under compression: the role of contact resistance, Scr. Mater. 61 (2009) 628–631. [30] P. Slobodian, P. Riha, A. Lengalova, P. Saha, Compressive stress-electrical conductivity characteristics of multiwall carbon nanotube networks, J. Mater. Sci. 46 (2011) 3186–3190. | |
utb.fulltext.sponsorship | This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504) and with the support of the Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and the nationalbudget of the Czech Republic, within the framework of the project CPS-strengthening research capacity (reg. number: CZ.1.05/2.1.00/19.0409), and by the internal grant of TBU in Zlin No. IGA/CPS/2015/001 funded from the resources of the Specific University Research. The financial support for P. R. from the Fund of the Institute of Hydrodynamics AV0Z20600510 is also gratefully acknowledged. | |
utb.scopus.affiliation | Centre of Polymer Systems, University Institute, Tomas Bata University, Tr. T. Bati 5678, Zlin, Czech Republic; Institute of Hydrodynamics, Academy of Sciences, Pod Patankou 30/5, Prague, Czech Republic | |
utb.fulltext.projects | NPU I (LO1504) | |
utb.fulltext.projects | CZ.1.05/2.1.00/19.0409 | |
utb.fulltext.projects | IGA/CPS/2015/001 | |
utb.fulltext.projects | AV0Z20600510 |