Kontaktujte nás | Jazyk: čeština English
dc.title | Využití jílových minerálů na výrobu biodegradabilních směsí na bázi polyvinylalkoholu a keratinového hydrolyzátu | cs |
dc.title | Use of clay minerals to produce biodegradable mixtures based on polyvinyl alcohol and keratin hydrolyzate | en |
dc.contributor.author | Jurča, Martin | |
dc.contributor.author | Julinová, Markéta | |
dc.contributor.author | Slavík, Roman | |
dc.contributor.author | Mokrejš, Pavel | |
dc.relation.ispartof | Waste Forum | |
dc.identifier.issn | 1804-0195 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2017 | |
utb.relation.issue | 4 | |
dc.citation.spage | 321 | |
dc.citation.epage | 327 | |
dc.type | article | |
dc.language.iso | cs | |
dc.publisher | Czech Environment Management Center | |
dc.subject | Composite materials | en |
dc.subject | Keratin hydrolyzate | en |
dc.subject | Mineral clay | en |
dc.subject | Polyvinyl alcohol | en |
dc.description.abstract | In the research, composite PVA films to contain selected types of clay minerals and keratin hydrolyzate were designed. The addition of clay Fillem can also improve the process and user properties of the resulting composite. In the research the Cloisite® Na+, Cloisite® 20A, Cloisite® 30B, Kaolin Sedlec 1A, waste Kaolin Strelec and zeolites prepared by synthesis of the waste materials. The blended films were subsequently subjected to biodegradation experiments. The test results indicate the effect of the mineral clay type on the resulting film decomposition. | en |
utb.faculty | Faculty of Technology | |
dc.identifier.uri | http://hdl.handle.net/10563/1007697 | |
utb.identifier.obdid | 43877040 | |
utb.identifier.scopus | 2-s2.0-85038622742 | |
utb.source | j-scopus | |
dc.date.accessioned | 2018-01-15T16:31:40Z | |
dc.date.available | 2018-01-15T16:31:40Z | |
utb.contributor.internalauthor | Jurča, Martin | |
utb.contributor.internalauthor | Julinová, Markéta | |
utb.contributor.internalauthor | Slavík, Roman | |
utb.contributor.internalauthor | Mokrejš, Pavel | |
utb.fulltext.affiliation | Martin JURČAa, Markéta JULINOVÁa, Roman SLAVÍKa, Pavel MOKREJŠb a Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Czech Republic, e-mail: [email protected], [email protected], [email protected] b Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin, Czech Republic, e-mail: [email protected] | |
utb.fulltext.dates | - | |
utb.fulltext.references | 1. OLAD A., Polymer/Clay Nanocomposites. [editor] Reddy Borreddy. Advances in Diverse Industrial Applications of Nanocomposites. 22.. 3. 2011, 7, s. 113 – 38, DOI: 10.5772/14464. 2. SAPALIDIS A. A., KATSAROS F. K., KANELLOPOULOS N. K., PVA / Montmorillonite Nanocomposites:Development and Properties. InTech [online]. Řecko: 2011, DOI: 10.5772/18217. 3. RAY S. S., BOUSMINAM., Biodegradable polymers and their layered silicate nanocomposites: In Greening the 21st century materias words.Progress in Materials Science. Canada: University of Laval, 2005, č. 50, s. 962 – 1079, DOI:10.1016/j.pmatsci.2005.05.002. 4.PLACHÁ D. S., MARTYNKOVÁ G., VALÁŠKOVÁ M., Význam jílů a jílových minerálů v nanotechnologiích. Chemické listy. 2011, 104, s. 582 – 84. 5. NEL A., XIA T., MÄDLER L., LI N., Toxic Potential of Materials at the Nanolevel. Science. 2006, 311, s. 622 – 27. 6. WEISS Z., KUŽVART M., Jílové minerály: Jejich nanostruktura a využití. Praha: Karolinum, 2005. ISBN 80-246-0868-5. 7. MEYERS, M. A., CHEN P. Y., LIN A. Y. M., SEKI Y., Biological materials: Structure and mechanical properties. Progress in Materials Sciece. 2008, 53, s. 1 – 206, DOI:10.1016/j.pmatsci.2007.05.002. 8. MOKREJŠ, P., KREJČÍ O., ČERMÁK R., SVOBODA P., Optimalizace podmínek enzymové hydrolýzy kuřecího peří. Chemické listy. 2013, 107, s. 709 – 12. 9. SINGH, I., KUSHWAHA R. K. S., Keratinases and microbial degradation of Keratin. Advances in Applied Science Research. 2015, 6 (2), s. 74 – 82. Dostupné z: http://www.imedpub.com/articles/keratinases-and-microbial-degradation-of-keratin.pdf 10. ZOCCOLA, M., ALUIGI A., TONIN C., Characterisation of keratin biomass from butchery and wool industry wastes. Journal of Molecular Structure. 2009, 938, DOI:10.1016/j.molstruc.2009.08.036. 11. SPIRIDON, I,M.,POPESCU C., BODARLAU R., VASILE C.,Enzymaticdegradation of some nanocomposites of poly(vinylalcohol) with starch. Polymer Degradation and Stability. 2008, č. 93, s. 1884 – 90, DOI:10.1016/j.polymdegradstab.2008.07.017. 12. SINHA R. S., OKAMOTO M.,Biodegradablepolylactide/layeredsilicatenanocomposites: Open a new dimension for plastics andc omposites. Macromolecular Rapid Communications. 2003, č. 24, s. 815 – 40, DOI: 10.1002/marc.200300008. 13. OKAMOTO K., RAY S. S., OKAMOTO M., New poly(butylenesuccinate)/layered silicate nanocomposites: Effect of organically modified layered silicates on structure, properties, melt rheology and biodegradability, Journal of Polymer Science: Part B: Polymer Physics. 14. LEE S. R., PARK H. M., LIM H., KANG T., LI X., CHO W. J., HA CH. S., Microstructure, tensile properties and biodegradability of aliphatic polyester/clay nanocomposites. 2002, č. 43, s. 1495 – 500. Dostupné z: http://www.ecoconceptionpolymerescomposites.com/medias/files/ds-eco-materiaux2010.pdf 15. DŘÍMAL P., HOFFMANN J., Laboratorní přístroje a postupy: Automatizovaný systém kontinuálního sledování aerobního biologického rozkladu látek ve vodním a půdním prostředí, Chemické listy, 2008, č. 102, s. 139 – 47, ISSN 1213-7103. 16. ZHENG X., SU Y., CHEN Y., Acute and Chronic responses of activated sludge viability and performance to Silica nanoparticles. Environmental Science and Technology. China: Tongji University, 2012, č. 46, s. 7182 – 88, DOI: 10.1021/es300777b. 17. MALACHOVÁ K., PRAUS P., PAVLÍČKOVÁ Z., TURICOVÁ M., Activity of antibacterial compounds immobilised on montmorillonit. Applied Clay Science, 2009, č. 43, s. 364 – 68, DOI:10.1016/j.clay.2008.11.003. 18. HONG S. I., RHIM J. W., Antimicrobial Activity of Organically Modified Nano-Clays. Journal of Nanoscience and Nanotechnology. American Scientific Publishers, 2008, č. 11, s. 5818 – 24. 19. LIU G., SONG Y., WANG J., ZHUANG H., MA L., LI C., LIU Y., ZHANG J., Effects of nanoclay type on physical and antimicrobial properties of PVOH – based nanocomposite films.LWT – Food Science and Technology. Elsevier, 2014, č. 57, s. 562 – 68, DOI:doi.org/10.1016/j.lwt.2014.01.009. | |
utb.fulltext.sponsorship | Autoři děkují za finanční podporu internímu grantovému projektu Univerzity Tomáše Bati ve Zlíně IGA/FT/2017/003. | |
utb.scopus.affiliation | Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University, Zlin, Czech Republic; Department of Polymer Engineering, Faculty of Technology, Tomas Bata University, Zlin, Czech Republic | |
utb.fulltext.projects | IGA/FT/2017/003 | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.ou | Department of Environmental Protection Engineering | |
utb.fulltext.ou | Department of Polymer Engineering |