Publikace UTB
Repozitář publikační činnosti UTB

Využití jílových minerálů na výrobu biodegradabilních směsí na bázi polyvinylalkoholu a keratinového hydrolyzátu

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Využití jílových minerálů na výrobu biodegradabilních směsí na bázi polyvinylalkoholu a keratinového hydrolyzátu cs
dc.title Use of clay minerals to produce biodegradable mixtures based on polyvinyl alcohol and keratin hydrolyzate en
dc.contributor.author Jurča, Martin
dc.contributor.author Julinová, Markéta
dc.contributor.author Slavík, Roman
dc.contributor.author Mokrejš, Pavel
dc.relation.ispartof Waste Forum
dc.identifier.issn 1804-0195 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.issue 4
dc.citation.spage 321
dc.citation.epage 327
dc.type article
dc.language.iso cs
dc.publisher Czech Environment Management Center
dc.subject Composite materials en
dc.subject Keratin hydrolyzate en
dc.subject Mineral clay en
dc.subject Polyvinyl alcohol en
dc.description.abstract In the research, composite PVA films to contain selected types of clay minerals and keratin hydrolyzate were designed. The addition of clay Fillem can also improve the process and user properties of the resulting composite. In the research the Cloisite® Na+, Cloisite® 20A, Cloisite® 30B, Kaolin Sedlec 1A, waste Kaolin Strelec and zeolites prepared by synthesis of the waste materials. The blended films were subsequently subjected to biodegradation experiments. The test results indicate the effect of the mineral clay type on the resulting film decomposition. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007697
utb.identifier.obdid 43877040
utb.identifier.scopus 2-s2.0-85038622742
utb.source j-scopus
dc.date.accessioned 2018-01-15T16:31:40Z
dc.date.available 2018-01-15T16:31:40Z
utb.contributor.internalauthor Jurča, Martin
utb.contributor.internalauthor Julinová, Markéta
utb.contributor.internalauthor Slavík, Roman
utb.contributor.internalauthor Mokrejš, Pavel
utb.fulltext.affiliation Martin JURČAa, Markéta JULINOVÁa, Roman SLAVÍKa, Pavel MOKREJŠb a Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Czech Republic, e-mail: [email protected], [email protected], [email protected] b Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin, Czech Republic, e-mail: [email protected]
utb.fulltext.dates -
utb.fulltext.references 1. OLAD A., Polymer/Clay Nanocomposites. [editor] Reddy Borreddy. Advances in Diverse Industrial Applications of Nanocomposites. 22.. 3. 2011, 7, s. 113 – 38, DOI: 10.5772/14464. 2. SAPALIDIS A. A., KATSAROS F. K., KANELLOPOULOS N. K., PVA / Montmorillonite Nanocomposites:Development and Properties. InTech [online]. Řecko: 2011, DOI: 10.5772/18217. 3. RAY S. S., BOUSMINAM., Biodegradable polymers and their layered silicate nanocomposites: In Greening the 21st century materias words.Progress in Materials Science. Canada: University of Laval, 2005, č. 50, s. 962 – 1079, DOI:10.1016/j.pmatsci.2005.05.002. 4.PLACHÁ D. S., MARTYNKOVÁ G., VALÁŠKOVÁ M., Význam jílů a jílových minerálů v nanotechnologiích. Chemické listy. 2011, 104, s. 582 – 84. 5. NEL A., XIA T., MÄDLER L., LI N., Toxic Potential of Materials at the Nanolevel. Science. 2006, 311, s. 622 – 27. 6. WEISS Z., KUŽVART M., Jílové minerály: Jejich nanostruktura a využití. Praha: Karolinum, 2005. ISBN 80-246-0868-5. 7. MEYERS, M. A., CHEN P. Y., LIN A. Y. M., SEKI Y., Biological materials: Structure and mechanical properties. Progress in Materials Sciece. 2008, 53, s. 1 – 206, DOI:10.1016/j.pmatsci.2007.05.002. 8. MOKREJŠ, P., KREJČÍ O., ČERMÁK R., SVOBODA P., Optimalizace podmínek enzymové hydrolýzy kuřecího peří. Chemické listy. 2013, 107, s. 709 – 12. 9. SINGH, I., KUSHWAHA R. K. S., Keratinases and microbial degradation of Keratin. Advances in Applied Science Research. 2015, 6 (2), s. 74 – 82. Dostupné z: http://www.imedpub.com/articles/keratinases-and-microbial-degradation-of-keratin.pdf 10. ZOCCOLA, M., ALUIGI A., TONIN C., Characterisation of keratin biomass from butchery and wool industry wastes. Journal of Molecular Structure. 2009, 938, DOI:10.1016/j.molstruc.2009.08.036. 11. SPIRIDON, I,M.,POPESCU C., BODARLAU R., VASILE C.,Enzymaticdegradation of some nanocomposites of poly(vinylalcohol) with starch. Polymer Degradation and Stability. 2008, č. 93, s. 1884 – 90, DOI:10.1016/j.polymdegradstab.2008.07.017. 12. SINHA R. S., OKAMOTO M.,Biodegradablepolylactide/layeredsilicatenanocomposites: Open a new dimension for plastics andc omposites. Macromolecular Rapid Communications. 2003, č. 24, s. 815 – 40, DOI: 10.1002/marc.200300008. 13. OKAMOTO K., RAY S. S., OKAMOTO M., New poly(butylenesuccinate)/layered silicate nanocomposites: Effect of organically modified layered silicates on structure, properties, melt rheology and biodegradability, Journal of Polymer Science: Part B: Polymer Physics. 14. LEE S. R., PARK H. M., LIM H., KANG T., LI X., CHO W. J., HA CH. S., Microstructure, tensile properties and biodegradability of aliphatic polyester/clay nanocomposites. 2002, č. 43, s. 1495 – 500. Dostupné z: http://www.ecoconceptionpolymerescomposites.com/medias/files/ds-eco-materiaux2010.pdf 15. DŘÍMAL P., HOFFMANN J., Laboratorní přístroje a postupy: Automatizovaný systém kontinuálního sledování aerobního biologického rozkladu látek ve vodním a půdním prostředí, Chemické listy, 2008, č. 102, s. 139 – 47, ISSN 1213-7103. 16. ZHENG X., SU Y., CHEN Y., Acute and Chronic responses of activated sludge viability and performance to Silica nanoparticles. Environmental Science and Technology. China: Tongji University, 2012, č. 46, s. 7182 – 88, DOI: 10.1021/es300777b. 17. MALACHOVÁ K., PRAUS P., PAVLÍČKOVÁ Z., TURICOVÁ M., Activity of antibacterial compounds immobilised on montmorillonit. Applied Clay Science, 2009, č. 43, s. 364 – 68, DOI:10.1016/j.clay.2008.11.003. 18. HONG S. I., RHIM J. W., Antimicrobial Activity of Organically Modified Nano-Clays. Journal of Nanoscience and Nanotechnology. American Scientific Publishers, 2008, č. 11, s. 5818 – 24. 19. LIU G., SONG Y., WANG J., ZHUANG H., MA L., LI C., LIU Y., ZHANG J., Effects of nanoclay type on physical and antimicrobial properties of PVOH – based nanocomposite films.LWT – Food Science and Technology. Elsevier, 2014, č. 57, s. 562 – 68, DOI:doi.org/10.1016/j.lwt.2014.01.009.
utb.fulltext.sponsorship Autoři děkují za finanční podporu internímu grantovému projektu Univerzity Tomáše Bati ve Zlíně IGA/FT/2017/003.
utb.scopus.affiliation Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University, Zlin, Czech Republic; Department of Polymer Engineering, Faculty of Technology, Tomas Bata University, Zlin, Czech Republic
utb.fulltext.projects IGA/FT/2017/003
utb.fulltext.faculty Faculty of Technology
utb.fulltext.faculty Faculty of Technology
utb.fulltext.ou Department of Environmental Protection Engineering
utb.fulltext.ou Department of Polymer Engineering
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam