Publikace UTB
Repozitář publikační činnosti UTB

Modulation of wettability, gradient and adhesion on self-assembled monolayer by counterion exchange and pH

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Modulation of wettability, gradient and adhesion on self-assembled monolayer by counterion exchange and pH en
dc.contributor.author Mosnáček, Jaroslav
dc.contributor.author Popelka, Anton
dc.contributor.author Osička, Josef
dc.contributor.author Filip, Jaroslav
dc.contributor.author Ilčíková, Markéta
dc.contributor.author Kollár, Jozef
dc.contributor.author Yousaf, Ammar B.
dc.contributor.author Bertók, Tomáš
dc.contributor.author Tkáč, Jan
dc.contributor.author Kasák, Peter
dc.relation.ispartof Journal of Colloid and Interface Science
dc.identifier.issn 0021-9797 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 512
dc.citation.spage 511
dc.citation.epage 521
dc.type article
dc.language.iso en
dc.publisher Academic Press Ltd.Elsevier Science Ltd.
dc.identifier.doi 10.1016/j.jcis.2017.10.086
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0021979717312559
dc.subject Adsorption en
dc.subject Counterion exchange en
dc.subject Self-assembled monolayer en
dc.subject Superwettability en
dc.subject Wettability gradient en
dc.description.abstract In this study, two quaternary ammonium salts derived from L-lipoic acid were applied for self-assembled monolayers formation on rough structured gold surface. The derivatives differ in functionality since one possesses simple quaternary ammonium group whereas the other one is carboxybetaine ester containing quaternary ammonium group with pH hydrolysable ester group as a pendant. The response of surface wettability to ion exchange between Cl− and perfluorooctanoate, kinetics and gradient wettability were examined by water contact angle measurement and confirmed by X-ray photoelectron spectroscopy. Furthermore, adhesion forces related to applied counterion on the entire surface and after hydrolysis were investigated by atomic force microscopy measurement at nanometer scales. A dramatic change in wettability upon counterion exchange from superhydrophilic for Cl− to very or superhydrophobic for perfluorooctanoate in a repeatable manner was observed for both derivatives. Kinetics of counterion exchanges revealed faster hydration of simple quaternary derivate. The wettability gradient could be designed from superhydrophobic to superhydrophilic either in a reversible manner by simple immersion of the modified surface in a counterion solution modulated by ionic strength or in an irreversible manner for carboxybetaine ester derivate by time-controlled hydrolysis to charge balanced carboxybetaine. © 2017 Elsevier Inc. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007570
utb.identifier.obdid 43878224
utb.identifier.scopus 2-s2.0-85032382013
utb.identifier.wok 000418729500057
utb.identifier.pubmed 29096112
utb.identifier.coden JCISA
utb.source j-scopus
dc.date.accessioned 2018-01-15T16:31:29Z
dc.date.available 2018-01-15T16:31:29Z
dc.description.sponsorship QUUG-CAM-2017-1, QU, Qatar University
dc.description.sponsorship Qatar University [QUUG-CAM-2017-1]; NPRP grant from the Qatar National Research Fund (Qatar Foundation) [NPRP-6-381-1-078, NPRP-9-219-2-105]
utb.contributor.internalauthor Filip, Jaroslav
utb.fulltext.affiliation Jaroslav Mosnáček a,b , Anton Popelka a , Josef Osicka a , Jaroslav Filip c , Marketa Ilcikova a,b , Jozef Kollar a,b , Ammar B. Yousaf a , Tomas Bertok d , Jan Tkac d , Peter Kasak a, ⇑ a Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar b Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovak Republic c Department of Environment Protection Engineering, Tomas Bata University, Vavreckova 275, 760 01 Zlin, Czech Republic d Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravská cesta 9, 845 38 Bratislava, Slovak Republic ⇑ Corresponding author. E-mail address: [email protected] (P. Kasak).
utb.fulltext.dates Received 13 September 2017 Revised 18 October 2017 Accepted 23 October 2017 Available online 25 October 2017
utb.fulltext.references [1] M. Liu, S. Wang, L. Jiang, Nature-inspired superwettability systems, Nat. Rev. Mater. 2 (2017) 17036. [2] M. Cao, L. Jiang, Superwettability integration: concepts, design and applications, Surf. Innovat. 4 (2016) 186–191. [3] B. Wang, W. Liang, Z. Guo, W. Liu, Biomimetic super-lyophobic and superlyophilic materials applied for oil/water separation: a new strategy beyond nature, Chem. Soc. Rev. 44 (2015) 336–361. [4] P. Cao, J. Mangadlao, R. Advincula, Stimuli-responsive polymers and their potential applications in oil-gas industry, Polym. Rev. 55 (2015) 706–733. [5] M. Chaudhury, G. Whitesides, How to make water run uphill, Science 256 (1992) 1539–1541. [6] E. Cabane, X. Zhang, K. Langowska, C.G. Palivan, W. Meier, Stimuli-responsive polymers and their applications in nanomedicine, Biointerphases 7 (2012) 9. [7] H. Nandivada, A. Ross, J. Lahann, Stimuli-responsive monolayers for biotechnology, Prog. Polym. Sci. 35 (2010) 141–154. [8] H. Kuroki, I. Tokarev, S. Minko, Responsive surfaces for life science applications, Annu. Rev. Mater. Res. 42 (2012) 343–372. [9] T. Sun, G. Wang, L. Feng, B. Liu, Y. Ma, L. Jiang, D. Zhu, Reversible switching between superhydrophilicity and superhydrophobicity, Angew. Chem. Int. Ed. 43 (2004) 357–360. [10] J. Lahann, S. Mitragotri, T.N. Tran, H. Kaido, H.J. Sundaram, I.S. Choi, S. Hoffer, G. A. Somorjai, R. Langer, A reversibly switching surface, Science 299 (2003) 371–374. [11] M. Ilcikova, J. Tkac, P. Kasak, Switchable materials containing polyzwitterion moieties, Polymers 7 (2015) 2344–2370. [12] S. Wang, Y. Song, L. Jiang, Photoresponsive surfaces with controllable wettability, J. Photochem. Photobiol. C 8 (2007) 18–29. [13] Y. Zhan, Y. Liu, J. Lv, Y. Zhao, Y. Yu, Photoresponsive surfaces with controllable wettability, Prog. Chem. 27 (2015) 157–167. [14] S. Moya, O. Azzaroni, T. Farhan, V. Osborne, W. Huck, Locking and unlocking of polyelectrolyte brushes: toward the fabrication of chemically controlled nanoactuators, Angew. Chem. Int. Ed. 44 (2005) 4578–4581. [15] Z. Hua, J. Yang, T. Wang, G. Liu, G. Zhang, Transparent surface with reversibly switchable wettability between superhydrophobicity and superhydrophilicity, Langmuir 29 (2013) 10307–10312. [16] O. Azzaroni, A. Brown, W. Huck, Tunable wettability by clicking counterions into polyelectrolyte brushes, Adv. Mater. 19 (2007) 151–154. [17] C. Huang, Y. Chen, Y. Chang, Counterion-activated nanoactuator: reversibly switchable killing/releasing bacteria on polycation brushes, ACS Appl. Mater. Interfaces 7 (2015) 2415–2423. [18] Y. Shen, Y. Zhang, Q. Zhang, L. Niu, T. You, A. Ivaska, Immobilization of ionic liquid with polyelectrolyte as carrier, Chem. Commun. 4193–4195 (2005). [19] L. Xu, W. Chen, A. Mulchandani, Y. Yan, Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic, Angew. Chem. Int. Ed. 44 (2005) 6009–6012. [20] J. Yang, Z. Zhang, X. Men, X. Xu, X. Zhu, X. Zhou, Q. Xue, Rapid and reversible switching between superoleophobicity and superoleophilicity in response to counterion exchange, J. Colloid Interface Sci. 366 (2012) 191–195. [21] G. Zhang, X. Zhang, M. Li, Z. Su, A surface with superoleophilic-to-superoleophobic wettability gradient, ACS Appl. Mater. Interfaces 6 (2014) 1729–1733. [22] L. Wang, B. Peng, Z. Su, Tunable wettability and rewritable wettability gradient from superhydrophilicity to superhydrophobicity, Langmuir 26 (2010) 12203–12208. [23] L. Wang, Y. Lin, B. Peng, Z. Su, Tunable wettability by counterion exchange at the surface of electrostatic self-assembled multilayers, Chem. Commun. 45 (2008) 5972–5974. [24] X. He, W. Yang, X. Pei, Preparation, characterization, and tunable wettability of poly(ionic liquid) brushes via surface-initiated atom transfer radical polymerization, Macromolecules 41 (2008) 4615–4621. [25] M. Park, J. Lee, B. Lee, Y. Lee, I. Choi, S. Lee, Covalent modification of multiwalled carbon nanotubes with imidazolium-based ionic liquids: effect of anions on solubility, Chem. Mater. 18 (2006) 1546–1551. [26] Y. Si, F. Yang, Z. Guo, Hybrid MWCNTs membrane with well-tunable wettability, J. Colloid Interface Sci. 484 (2016) 173–182. [27] J. Osicka, M. Ilcikova, A. Popelka, J. Filip, T. Bertok, J. Tkac, P. Kasak, Simple, reversible and fast modulation in superwettability, gradient and adsorption by counterion exchange on self-assembled monolayer, Langmuir 32 (2016) 54915–55499. [28] M. Barbalinardo, D. Gentili, M. Brucale, F. Valle, I. Manet, G. Foschi, M. Zambianchi, M. Melucci, M. Cavallini, Self-protective action in multicomponent fluorescent self-assembled monolayers, RSC Adv. 6 (2016) 17106–17109. [29] D. Gentili, G. Foschi, F. Valle, M. Cavallini, F. Biscarini, Applications of dewetting in micro and nanotechnology, Chem. Soc. Rev. 41 (2012) 4430–4443. [30] F. Lugli, G. Fioravanti, D. Pattini, L. Pasquali, M. Montecchi, D. Gentili, M. Murgia, Z. Hemmatian, M. Cavallini, F. Zerbetto, And yet it moves! microfluidics without channels and troughs, Adv. Fun. Mater. 23 (2013) 5543–5549. [31] G.M. Whitesides, Nanoscience, nanotechnology, and chemistry, Small 1 (2005) 172–179. [32] C. Nicosiaa, J. Huskens, Reactive self-assembled monolayers: from surface functionalization to gradient formation, Mater. Horiz. 1 (2014) 32–45. [33] Y. Chi, J. Lee, S. Lee, I. Choi, Control of wettability by anion exchange on Si/SiO2 surfaces, Langmuir 20 (2004) 3024–3027. [34] Y. Chi, S. Hwang, B. Lee, J. Kwak, I. Choi, S. Lee, Anion exchange-promoted Ru 3+/2+ redox switch in self-assembled monolayers of imidazolium ions on a gold electrode, Langmuir 21 (2005) 4268–4271. [35] B. Lee, Y. Chi, J. Lee, I. Choi, C. Song, S. Namgoong, S. Lee, Imidazolium ion-terminated self-assembled monolayers on Au: effects of counteranions on surface wettability, J. Am. Chem. Soc. 126 (2004) 480–481. [36] J. Liu, J. Li, B. Yu, B. Ma, Y. Zhu, X. Song, X. Cao, W. Yang, F. Zhou, Tribological properties of self-assembled monolayers of catecholic imidazolium and the spin-coated films of ionic liquids, Langmuir 27 (2011) 11324–11331. [37] S. Wang, K. Liu, X. Yao, L. Jiang, Bioinspired surfaces with superwettability: new insight on theory, design, and applications, Chem. Rev. 115 (2015) 8230–8293. [38] Y. Tian, B. Su, L. Jiang, Interfacial material system exhibiting superwettability, Adv. Mater. 26 (2014) 6872–6897. [39] D. Quéré, Wetting and roughness, Annu. Rev. Mater. Res. 38 (2008) 71–99. [40] T. Bertok, L. Klukova, A. Sediva, P. Kasak, V. Semak, M. Micusik, M. Omastova, L. Chovanová, M. Vlček, R. Imrich, A. Vikartovska, J. Tkáč, Ultrasensitive impedimetric lectin biosensors with efficient antifouling properties applied in glycoprofiling of human serum samples, Anal. Chemistry 85 (2013) 7324–7332. [41] J. Filip, A. Popelka, T. Bertok, A. Holazova, J. Osicka, J. Kollar, M. Ilčiková, J. Tkac, P. Kasak, pH switchable interaction of carboxybetaine ester based SAM with DNA and gold nanoparticles, Langmuir 33 (2017) 6657–6666. [42] B. Su, Y. Tian, L. Jiang, Bioinspired interfaces with superwettability: from materials to chemistry, J. Am. Chem. Soc. 138 (2016) 1727–1748. [43] C. Wang, Y. Song, J. Zhao, X. Xia, Semiconductor supported biomimetic superhydrophobic gold surfaces by the galvanic exchange reaction, Surf. Sci. 600 (2006) 38–42. [44] D.A. Walker, E.K. Leitsch, R.J. Nap, I. Szleifer, B.A. Grzybowski, Geometric curvature controls the chemical patchiness and self-assembly of nanoparticles, Nat. Nanotechnol. 8 (2013) 676–681. [45] O. Ivashenko, J.T. van Herpt, B.L. Feringa, P. Rudolf, W.R. Browne, Electrochemical write and read functionality through oxidative dimerization of spiropyran self-assembled monolayers on gold, J. Phys. Chem. C 117 (2013) 18567–18577. [46] D. Laurent, J. Schlenoff, Multilayer assemblies of redox polyelectrolytes, Langmuir 13 (1997) 1552–1557. [47] E.V. Dehmlow, S.S. Dehmlow, Tunable wettability by clicking counterions into polyelectrolyte brushes, in: Phase Transfer Catalysis, third ed., VCH, Weinheim, 1993, pp. 1–28 (Chapter 1). [48] S.H. Hsu, D.N. Reinhoudt, J. Huskens, A.H. Velders, Lateral interactions at functional monolayers, J. Mater. Chem. 21 (2011) 2428–2444. [49] S. Li, P. Cao, R. Colorado Jr., X. Yan, I. Wenzl, O.E. Shmakova, M. Graupe, T.R. Lee, S.S. Perry, Local packing environment strongly influences the frictional properties of mixed CH3- and CF3-terminated alkanethiol SAMs on Au(111), Langmuir 21 (2005) 933–936. [50] L. Wang, W. Lin, Z. Su, Counterion exchange at the surface of polyelectrolyte multilayer film for wettability modulation, Soft Matter 5 (2009) 2072–2078. [51] L. Wang, L. Wang, Z. Su, Surface defects in polyelectrolyte multilayers: effects of drying and deposition cycle, Soft Matter 7 (2011) 4851–4855. [52] A. Pulsipher, M.N. Yousaf, Surface chemistry and cell biological tools for the analysis of cell adhesion and migration, ChemBioChem 11 (2010) 745–753. [53] B. Sun, R.M. Flessner, E.M. Saurer, C.M. Jewell, N.J. Fredin, D.M. Lynn, Characterization of pH-induced changes in the morphology of polyelectrolyte multilayers assembled from poly(allylamine) and low molecular weight poly(acrylic acid), J. Colloid Interface Sci. 355 (2011) 431–441. [54] A. Mierczynska, A. Michelmore, A. Tripathi, R.V. Goreham, R. Sedev, K. Vasilev, pH-tunable gradients of wettability and surface potential, Soft Matter 8 (2012) 8399–8404. [55] Y. Zhang, J. Cheng, Z.-R. Yang, Construction of wettability gradient surface on copper substrate by controlled hydrolysis of poly(methyl methacrylate–butylacrylate) films, Appl. Surf. Sci. 315 (2014) 163–168. [56] C.-J. Wu, C.-J. Huang, S. Jiang, Y.-J. Sheng, H.-K. Tsao, Superhydrophilicity and spontaneous spreading on zwitterionic surfaces: carboxybetaine and sulfobetaine, RSC Adv. 6 (2016) 24827–24834.
utb.fulltext.sponsorship The authors gratefully acknowledge Mr Ahmed Suliman, Gas Processing Center Qatar University, for carrying out the XPS analysis. This publication was supported by Qatar University Grant QUUG-CAM-2017-1. This publication was made possible by NPRP grant # NPRP-6-381-1-078 and NPRP-9-219-2-105 from the Qatar National Research Fund (member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.
utb.scopus.affiliation Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar; Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia; Department of Environment Protection Engineering, Tomas Bata University, Vavreckova 275, Zlin, Czech Republic; Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravská cesta 9, Bratislava, Slovakia
utb.fulltext.projects QUUG-CAM-2017-1
utb.fulltext.projects NPRP-6-381-1-078
utb.fulltext.projects NPRP-9-219-2-105
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam