Publikace UTB
Repozitář publikační činnosti UTB

Biodegradace směsí PLA/PHB ve vodném termofilním anaerobním prostředí

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Biodegradace směsí PLA/PHB ve vodném termofilním anaerobním prostředí cs
dc.title Biodegradation of blend PLA/PHB in thermophilic anaerobic aqueous conditions en
dc.contributor.author Dvořáčková, Marie
dc.contributor.author Bartuňková, Michaela
dc.contributor.author Koutný, Marek
dc.contributor.author Vaňharová, Ludmila
dc.relation.ispartof Waste Forum
dc.identifier.issn 1804-0195 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.issue 3
dc.citation.spage 209
dc.citation.epage 217
dc.type article
dc.language.iso cs
dc.publisher Czech Environment Management Center
dc.relation.uri https://www.tretiruka.cz/media-a-odpady/waste-forum/archiv/a2017/waste-forum-2017-3-str-112-218/
dc.subject Anaerobic sludge en
dc.subject Biodegradation en
dc.subject Hydrolysis en
dc.subject PLA en
dc.subject Poly(lactic acid) en
dc.subject Polyhydroxybutyrate en
dc.subject Thermophilic en
dc.description.abstract This work investigates the biodegradation of PLA poly(lactid-Acid) and blend PLA with polyhydroxybutyrate (PBH) in an environment of mesophilic (37°C) and thermophilic (55°C) anaerobic sludge. The thermophilic anaerobic sludge was prepared in a laboratory from mesophilic sludge sourced from a municipal waste water treatment plant and placed under thermophilic conditions. It was confirmed that PLA failed to decompose under mesophilic anaerobic conditions, while the degree of biodegradation achieved under thermophilic conditions more than 80%. The blend of PLA / PHB was under anaerobic thermophilic conditions almost completely decomposed, but under anaerobic mesophilic conditions, the decomposition rate corresponded approximately representation of PHB in the mixture. Abiotic hydrolysis of blend PLA/PBH in an environment of phosphate buffer (pH 7) at 55°C reached 23.8%, leading to the conclusion that hydrolytic enzymes present in thermophilic anaerobic sludge are involved in the biodegradation process as well as abiotic hydrolysis. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007553
utb.identifier.obdid 43877082
utb.identifier.scopus 2-s2.0-85031092893
utb.source j-scopus
dc.date.accessioned 2018-01-15T16:31:27Z
dc.date.available 2018-01-15T16:31:27Z
utb.contributor.internalauthor Dvořáčková, Marie
utb.contributor.internalauthor Bartuňková, Michaela
utb.contributor.internalauthor Koutný, Marek
utb.contributor.internalauthor Vaňharová, Ludmila
utb.fulltext.affiliation Marie DVOŘÁČKOVÁ, Michaela BARTUŇKOVÁ, Marek KOUTNÝ, Ludmila VAŇHAROVÁ Department of Environmental Engineering, Faculty of Technology, Tomas Bata University in Zlín, Czech Republic e-mail: [email protected]
utb.fulltext.dates -
utb.fulltext.references 1. K. Fukushima, C. Abbate, D. Tabuani, M. Gennari and G. Camino, Polym Degrad Stabil, 2009, 94, 1646 – 1655. 2. K. Fukushima, D. Tabuani and G. Camino, Mat Sci Eng C-Bio S, 2009, 29, 1433 – 1441. 3. G. Kale, R. Auras, S. P. Singh and R. Narayan, Polym Test, 2007, 26, 1049 – 1061. 4. O. Cadar, M. Paul, C. Roman, M. Miclean and C. Majdik, Polym Degrad Stabil, 2012, 97, 354 – 357. 5. B. G. Hermann, L. Debeer, B. De Wilde, K. Blok and M. K. Patel, Polym Degrad Stabil, 2011, 96, 1159 – 1171. 6. T. Kijchavengkul, R. Auras, M. Rubino, M. Ngouajio and R. T. Fernandez, Polym Test, 2006, 25, 1006 – 1016. 7. J. J. Kolstad, E. T. H. Vink, B. De Wilde and L. Debeer, Polym Degrad Stabil, 2012, 97, 1131 – 1141. 8. M. J. Krause and T. G. Townsend, Environ Sci Tech Let, 2016, 3, 166 – 169. 9. H. Yagi, F. Ninomiya, M. Funabashi and M. Kunioka, Int J Mol Sci, 2009, 10, 3824 – 3835. 10. H. Yagi, F. Ninomiya, M. Funabashi and M. Kunioka, Polym Degrad Stabil, 2009, 94, 1397 – 1404. 11. H. Yagi, F. Ninomiya, M. Funabashi and M. Kunioka, Polym Degrad Stabil, 2010, 95, 1349 – 1355. 12. H. Yagi, F. Ninomiya, M. Funabashi and M. Kunioka, J Polym Environ, 2012, 20, 673 – 680. 13. H. Yagi, F. Ninomiya, M. Funabashi and M. Kunioka, Polym Degrad Stabil, 2013, 98, 1182 – 1187. 14. B. Shi, V. Topolkaraev and J. Wang, Acs Sym Ser, 2011, 1063, 117 – 132. 15. M. Itavaara, S. Karjomaa and J. F. Selin, Chemosphere, 2002, 46, 879 – 885. 16. S. P. Lyu, J. Schley, B. Loy, D. Lind, C. Hobot, R. Sparer and D. Untereker, Biomacromolecules, 2007, 8, 2301 – 2310. 17. E. J. Jung, P. K. Shin and H. K. Bae, J Microbiol Biotechn, 1999, 9, 464 – 468. 18. Y. X. Weng, Y. J. Jin, Q. Y. Meng, L. Wang, M. Zhang and Y. Z. Wang, Polym Test, 2013, 32, 918 – 926. 19. M. A. Abdelwahab, A. Flynn, B. S. Chiou, S. Imam, W. Orts and E. Chiellini, Polym Degrad Stabil, 2012, 97, 1822 – 1828. 20. M. P. Arrieta, E. Fortunati, F. Dominici, E. Rayon, J. Lopez and J. M. Kenny, Polym Degrad Stabil, 2014, 107, 139 – 149. 21. P. Stloukal, M. Koutny, V. Sedlarik and P. Kucharczyk, Aip Conf Proc, 2012, 1459, 20 – 22. 22. B. Shi and D. Palfery, J Polym Environ, 2010, 18, 122 – 127.
utb.fulltext.sponsorship Autoři děkují za finanční podporu internímu grantovému projektu Univerzity Tomáše Bati ve Zlíně IGA/FT/2017/003.
utb.scopus.affiliation Department of Environmental Engineering, Faculty of Technology, Tomas Bata University in Zlín, Czech Republic
utb.fulltext.projects IGA/FT/2017/003
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam