Kontaktujte nás | Jazyk: čeština English
dc.title | Shrubs shed light on 20th century Greenland ice sheet melting | en |
dc.contributor.author | Buras, Allan | |
dc.contributor.author | Lehejček, Jiří | |
dc.contributor.author | Michalová, Zuzana | |
dc.contributor.author | Morrissey, Robert C. | |
dc.contributor.author | Svoboda, Miroslav | |
dc.contributor.author | Wilmking, Martin | |
dc.relation.ispartof | Boreas | |
dc.identifier.issn | 0300-9483 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2017 | |
utb.relation.volume | 46 | |
utb.relation.issue | 4 | |
dc.citation.spage | 667 | |
dc.citation.epage | 677 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Blackwell Publishing Inc. | |
dc.identifier.doi | 10.1111/bor.12244 | |
dc.relation.uri | http://onlinelibrary.wiley.com/doi/10.1111/bor.12244/full | |
dc.description.abstract | The Greenland Ice Sheet (GrIS) is a key element of the global climate system and thus knowledge about its melting in the past is desirable. However, GrIS-melt records only date back until 1979 and climate data based reconstructions covering the 20th century differ with respect to absolute values. To extend our knowledge about the Greenland Ice Sheet we examined the potential of shrub ring-widths and wood-anatomy as proxies for GrIS-melt. We found significant correlations between shrub cell-wall thickness and regional melt derived from passive microwave satellite brightness for 7% of the total GrIS area. A respective transfer function calibrated over the period 1979 to 2007 successfully passed model calibration-verification tests and explained 42% of GrIS-melt variability. Consequently, the first GrIS-melt reconstruction based on shrub wood-anatomy covering the period 1909 to 2012 is presented and compared against two temperature-based reconstructions. For the period prior to 1930 the new reconstruction contrasts with existing literature but generally confirms that most recent record melt rates are amongst the highest since the early 20th century. We discuss the sensitivity of shrubs to several influencing factors besides summer temperature as possible reason for the observed differences and highlight the potential of using shrubs as multi-parameter proxies within a network to increase our knowledge about 20th century Greenland Ice Sheet dynamics. © 2017 Collegium Boreas. Published by John Wiley & Sons Ltd | en |
utb.faculty | Faculty of Logistics and Crisis Management | |
dc.identifier.uri | http://hdl.handle.net/10563/1007545 | |
utb.identifier.obdid | 43876827 | |
utb.identifier.scopus | 2-s2.0-85017389242 | |
utb.identifier.wok | 000412097800005 | |
utb.source | j-scopus | |
dc.date.accessioned | 2018-01-15T16:31:25Z | |
dc.date.available | 2018-01-15T16:31:25Z | |
dc.description.sponsorship | 20154304, CZU, Česká Zemědělská Univerzita v Praze | |
dc.description.sponsorship | Virtual Institute of Integrated Climate and Landscape Evolution Analysis - ICLEA - of the Helmholtz Association [VH-VI-415]; Internal Grant Agency of Czech University of Life Sciences Prague [20154304]; INTERACT under the European Community's Seventh Framework Programme [262693] | |
utb.contributor.internalauthor | Lehejček, Jiří | |
utb.fulltext.affiliation | ALLAN BURAS, JIŘÍ LEHEJČEK, ZUZANA MICHALOVÁ, ROBERT C. MORRISSEY, MIROSLAV SVOBODA AND MARTIN WILMKING Allan Buras* ([email protected]) and Martin Wilmking, Landscape Ecology and Ecosystem Dynamics, Institute for Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, Greifswald 17487, Germany, *Present address: Ecoclimatology, Technische Universit€ at M€ unchen, Hans-Carl-von-Carlowitz-Platz 2, Freising 85354, Germany; Jiří Lehejček**, Zuzana Michalová, Robert C. Morrissey and Miroslav Svoboda, Department of Forest Ecology, Faculty of Forestry and Wood Science, Czech University of Life Sciences in Prague, Kamýcká 1176, Prague 6 – Suchdol, the Czech Republic, **Present address: Department of Environmental Security, Faculty of Logistics and Crisis Management, Tomas Bata University in Zlín, nám T.G. Masaryka 5555, 760 01 Zlín, the Czech Republic | |
utb.fulltext.dates | received 27th October 2016, accepted 22nd February 2017 | |
utb.fulltext.references | Abdalati, W. 2007: Greenland Ice Sheet Melt Characteristics Derived from Passive Microwave Data, 1979–2007. Boulder, Colorado USA: NASA National Snow and Ice Data Center. Digital media. Abdalati, W. & Steffen, K. 1997: Snowmelt on the Greenland ice sheet as derived from passive microwave satellite data. Journal of Climate 10, 165–175. Akaike, H. 2011: Akaike’s information criterion. In Lovric, M. (ed.): International Encyclopedia of Statistical Science. 25 pp. Springer, Berlin Heidelberg. von Arx, G. & Carrer, M. 2014: ROXAS – A new tool to build centuries-long tracheid-lumen chronologies in conifers. Dendrochronologia 32, 290–293. Bakker, P., Schmittner, A., Lenaerts, J. T. M., Abe-Ouchi, A., Bi, D., van den Broeke, M. R., Chan, W. L., Hu, A., Beadling, R. L., Marsland, S. J., Mernild, S. H., Saenko, O. A., Swingedouw, D., Sullivan, A. & Yin, J. 2016: Fate of the Atlantic Meriodional Overturning Circulation: strong decline under continued warming and Greenland melting. Geophysical Research Letters 43, 12252–12260. Bär, A., Pape, R., Bräuning, A. & öffler, J. 2008: Growth-ring variations of dwarf shrubs reflect regional climate signals in alpine environments rather than topoclimatic differences. Journal of Biogeography 35, 625–636. Beil, I., Buras, A., Hallinger, M., Smiljanić, M. & Wilmking, M. 2015: Shrubs tracing sea surface temperature—Calluna vulgaris on the Faroe Islands. International Journal of Biometeorology 59, 1567–1575. Blok, D., Sass-Klaassen, U., Schaepman-Strub, G., Heijmans, M. M. P. D., Sauren, P. & Berendse, F. 2011: What are the main climate drivers for shrub growth in Northeastern Siberian tundra? Biogeosciences 8, 1169–1179. Box, J. E. 2013: Greenland ice sheet mass balance reconstruction. Part II: surface mass balance (1840–2010). Journal of Climate 26, 6974–6989. Box, J. E., Yang, L., Bromwich, D. H. & Bai, L.-S. 2009: Greenland ice sheet surface air temperature variability: 1840–2007. Journal of Climate 26, 4029–4049. Briffa, K. R. & Melvin, T. M. 2011: A closer look at regional curve standardization of tree-ring records: justification of the need, a warning of some pitfalls, and suggested improvements in its application. In Hughes, M. K., Swetnam, T. W. & Diaz, H. F. (eds.): Dendroclimatology: Progress & Prospects, 113–145. Developments in Paleoenvironmental Research 11, Springer, Dordrecht. Bunn, A., Korpela, M., Biondi, F., Campelo, F., Mérian, P., Qeadan, F. & Zang, C. 2015: dplR: Dendrochronology Program Library in R. R package version 1.6.3. Buras, A. & Wilmking, M. 2014: Straight lines or eccentric eggs? A comparison of radial and spatial ring width measurements and its implications for climate transfer functions. Dendrochronologia 32, 313–326. Buras, A. & Wilmking, M. 2015: Correcting the calculation of Gleichläufigkeit. Dendrochronologia 34, 29–30. Buras, A., Hallinger, M. & Wilmking, M. 2012: Can shrubs help to reconstruct historical glacier retreats? Environmental Research Letters 7, 44031, doi: 10.1088/1748-9326/7/4/044031. Buras, A., Zang, C. & Menzel, A. 2017: Testing the stability of transfer functions. Dendrochronologia 42, 56–62. Carrer, M. 2011: Individualistic and time-varying tree-ring growth to climate sensitivity. PLoS ONE 6, e22813, doi:10.1371/journal.pone.0022813. Chylek, P., Dubey, M. K. & Lesins, G. 2006: Greenland warming of 1920–1930 and 1995–2005. Geophysical Research Letters 33, L11707, doi: 10.1029/2006GL026510. Cook, E. R., Briffa, K. R. & Jones, P. D. 1994: Spatial regression methods in dendroclimatology: a review and comparison of two techniques. International Journal of Climatology 14, 379–402. Driesschaert, E., Fichefet, T., Goosse, H., Huybrechts, P., Janssens, I., Mouchet, A., Munhoven, G., Brovkin, V. & Weber, S. L. 2007: Modeling the influence of Greenland ice sheet melting on the Atlantic meridional overturning circulation during the next millennia. Geophysical Research Letters 34, L10707, doi:10.1029/2007GL029516. Eckstein, D. & Bauch, J. 1969: Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussa- gesicherheit. Forstwissenschaftliches Centralblatt 88, 230–250. Eilmann, B., Zweifel, R., Buchmann, N., Graf Pannatier, E. & Rigling, A. 2011: Drought alters timing, quantity, and quality of wood formation in Scots pine. Journal of Experimental Botany 62, 2763–2771. Ettema, J., van den Broeke, M. R., van Meijgaard, E., van de Berg, W. J., Bamber, J. L., Box, J. E. & Bales, R. C. 2009: Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modelling. Geophysical Research Letters 36, L12501, doi:10.1029/2009GL038110. Fettweis, X. 2007: Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR. The Cryosphere 1, 21–40. Fettweis, X., Tedesco, M., van den Broeke, M. & Ettema, J. 2011: Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models. The Cryosphere 5, 359–375. Fox, A. D., Francis, I. S., Madsen, J. & Stroud, J. M. 1987: The breeding biology of the Lapland Bunting Calcarius lapponicus in West Greenland during two contrasting years. Ibis 129, 541–552. Frauenfeld, O. W., Knappenberger, P. C. & Michaels, P. J. 2011: A reconstruction of annual Greenland ice melt extent, 1784–2009. Journal of Geophysical Research 116, D08104, doi:10.1029/2010JD014918. Fredskild, B. 1996: A phytogeographical study of the vascular plants of West Greenland. Meddelelser om Grønland 45, 3–157. Fritts, H. C. 1976: Tree Rings and Climate. 567 pp. Academic, San Diego. Ganopolski, A. & Rahmstorf, S. 2001: Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158. Hanna, E., Cropper, T. E., Hall, R. J. & Cappelen, J. 2016: Greenland Blocking Index 1851–2015: a regional climate change signal. International Journal of Climatology 36, 4847–4861. Hanna, E., Fettweis, X., Mernild, S. H., Cappelen, J., Ribergaard, M. H., Shuman, C. A., Steffen, K., Wood, L. & Mote, T. L. 2014: Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. International Journal of Climatology 34, 1022–1037. Hanna, E., Huybrechts, P., Cappelen, J., Steffen, K., Bales, R. C., Burgess, E., McConnell, J. R., Peder Steffensen, J., Van den Broeke, M., Wake, L., Bigg, G., Griffiths, M. & Savas, D. 2011: Greenland ice sheet surface mass balance 1870 to 2010 based on twentieth century reanalysis, and links with global climate forcing. Journal of Geophysical Research 116, D24121, doi:10.1029/2011JD016387. Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C., Irvine-Fynn, T., Wise, S. & Griffiths, M. 2008: Increased runoff from melt from the Greenland Ice Sheet: a response to global warming. Journal of Climate 21, 331–341. Hanna, E., Jones, J. M., Cappelen, J., Mernild, S. H., Wood, L., Steffen, K. & Huybrechts, P. 2013: The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. International Journal of Climatology 33, 862–880. Hanna, E., Mernild, S. H., Cappelen, J. & Steffen, K. 2012: Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records. Environmental Research Letters 7, 045404, doi:10.1088/1748-9326/7/4/045404. Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. 2014: Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. International Journal of Climatology 34, 623–642. Hock, R. 2003: Temperature index melt modelling in mountain areas. Journal of Hydrology, Mountain Hydrology and Water Resources 282, 104–115. Knibbe, B. 2007: Past4: personal analysis system for treering research, Version 4.2. SCIEM. Vienna, Austria. Kutzbach, L., Thees, B. & Wilmking, M. 2010: Identification of linear relationships from noisy data using errors-in-variables models—relevance for reconstruction of past climate from tree-ring and other proxy information. Climatic Change 105, 155–177. Larocque, S. J. & Smith, D. J. 2005: “Little Ice Age” proxy glacier mass balance records reconstructed from tree rings in the Mt Waddington area, British Columbia Coast Mountains, Canada. The Holocene 15, 748–757. Lehejček, J., Buras, A., Svoboda, M. & Wilmking, M. 2016: Wood anatomyof Juniperus communis: a promising proxy for palaeoclimate reconstructions in the Arctic. Polar Biology, doi: 10.1007/s00300-016-2021-z. Lenaerts, J. T. M., Le Bars, D., van Kampenhout, L., Vizcaino, M., Enderlin, E. M. & van den Broeke, M. R. 2015: Representing Greenland ice sheet freshwater fluxes in climate models. Geophysical Research Letters 42, L064738, doi:10.1002/2015GL064738. Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S. & Schellnhuber, H. J. 2008: Tipping elements in the Earth’s climate system. PNAS 105, 1786–1793. Li, B., Heijmans, M. M., Berendse, F., Blok, D., Maximov, T. & Sass-Klaassen, U. 2016: The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra. Polar Biology 39, 1245, doi: 10.1007/s00300-015-1847-0. Mote, T. L. 2014: MEaSUREs Greenland Surface Melt Daily 25km EASE-Grid 2.0, Version 1. NASA National Snow and Ice Data Center. Digital media, Boulder. Myers-Smith, I. H., Elmendorf, S. C., Beck, P. S. A., Wilmking, M., Hallinger, M., Blok, D., Tape, K. D., Rayback, S. A., Macias-Fauria, M., Forbes, B. C., Speed, J. D. M., Boulanger-Lapointe, N., Rixen, C., Levesque, E., Schmidt, N. M., Baittinger, C., Trant, A. J., Hermanutz, L., Collier, L. S., Dawes, M. A., Lantz, T. C., Weijers, S., Jorgensen, R. H., Buchwal, A., Buras, A., Naito, A. T., Ravolainen, V., Schaepman-Strub, G., Wheeler, J. A., Wipf, S., Guay, K. C., Hik, D. S. & Vellend, M. 2015: Climate sensitivityof shrub growth across the tundrabiome. Nature Climate Change 5, 887–891. Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan, K., Shuman, C. A., DiGirolamo, N. E. & Neumann, G. 2012: The extreme melt across the Greenland ice sheet in 2012. Geophysical Research Letters 39, L20502, doi:10.1029/2012GL053611. Pierce, D. 2014: ncdf: Interface to Unidata netCDF data files. R package version 1.6.8. R Core Team 2015: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Sarkar, D. 2008: Lattice: trellis graphics for R. R packageversion 0.20.33. Schneider, L. & G€ artner, H. 2013: The advantage of using a starch based non-Newtonian fluid to prepare micro sections. Dendrochronologia 31, 175–178. Schweingruber, F. H., Börner, A. & Schulze, E.-D. 2007: Atlas of Woody Plant Stems: Evolution, Structure, and Environmental Modifications.229 pp. Springer, Heidelberg Schweingruber, F. H., Hellmann, L., Tegel, W., Braun, S., Nievergelt, D.& Büntgen, U. 2013: Evaluating the wood anatomical and dendroecological potential of arctic dwarf shrub communities. IAWA Journal 34, 485–497. Tedesco, M., Fettweis, X., Mote, T., Wahr, J., Alexander, P., Box, J. E. & Wouters, B. 2013: Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. The Cryosphere 15, 615–630. Timmermann, A., Okumura, Y., An, S.-I., Clement, A., Dong, B., Guilyardi, E., Hu, A., Jungclaus, J. H., Renold, M., Stocker, T. F., Stouffer, R. J., Sutton, R., Xie, S.-P. & Yin, J. 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. Journal of Climate 20, 4899–4919. Urbanek, S. 2013: tiff: Read and write TIFF images. R package version 0.1-5. Watson, E. & Luckman, B. H. 2004: Tree-ring-based mass-balance estimates for the past 300 years at Peyto Glacier, Alberta, Canada. Quaternary Research 62, 9–18. Weijer, W., Maltrud, M. E., Hecht, M. W., Dijkstra, H. A. & Kliphuis, M. A. 2012: Response of the Atlantic Ocean circulation to Greenland Ice Sheet melting in a strongly-eddying ocean model. Geophysical Research Letters 39, L09606, doi:10.1029/2012GL051611. Weijers, S., Alsos, I. G., Eidesen, P. B., Broekman, R., Loonen, M. J. J. E. & Rozema, J. 2012: No divergence in Cassiope tetragona: persistence of growth response along a latitudinal temperature gradient and under multi-year experimental warming. Annals of Botany 110, 653–665. Weijers, S., Broekman, R. & Rozema, J. 2010: Dendrochronology in the High Arctic: July air temperatures reconstructed from annual shoot length growth of the circumarctic dwarf shrub Cassiope tetragona. Quaternary Science Reviews 29, 3831–3842. Wigley, T. M. L., Briffa, K. R. & Jones, P. D. 1984: On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Applied Meteorology 23, 201–213. Wood, L. J., Smith, D. J. & Demuth, M. N. 2011: Extending the Place Glacier mass-balance record to AD 1585, using tree rings and wood density. Quaternary Research 76, 305–313. Young, A. B., Watts, D. A., Taylor, A. H. & Post, E. 2016: Species and site differences influence climate-shrub growth responses in West Greenland. Dendrochronologia 37, 69–78. | |
utb.fulltext.sponsorship | This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis – ICLEA – of the Helmholtz Association, grant number VH-VI-415. We would like to thank the Internal Grant Agency of Czech University of Life Sciences Prague, Project No. 20154304 for its material support of the study. The research also received support (logistics and access to the Kobbefjord research station) from INTERACT (grant agreement No. 262693), under the European Community’s Seventh Framework Programme. We thank station manager Katrine Randrup as well as Daniel Nývlt and Petra Polická a for their help with fieldwork. We are grateful for valuable advice from Elisabeth Martinez, Jan A. Piotrowski and two anonymous reviewers on how to improve the manuscript. | |
utb.scopus.affiliation | Landscape Ecology and Ecosystem Dynamics, Institute for Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, Greifswald, Germany; Department of Forest Ecology, Faculty of Forestry and Wood Science, Czech University of Life Sciences in Prague, Kamýcká 1176, Prague 6 – Suchdol, Czech Republic; Ecoclimatology, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, Freising, Germany; Department of Environmental Security, Faculty of Logistics and Crisis Management, Tomas Bata University in Zlín, nám T.G. Masaryka 5555, Zlín, Czech Republic | |
utb.fulltext.projects | VH-VI-415 | |
utb.fulltext.projects | 20154304 | |
utb.fulltext.projects | 262693 |