Kontaktujte nás | Jazyk: čeština English
dc.title | Construction of hierarchical CuO/Cu2O@NiCo2S4 Nanowire arrays on copper foam for high performance supercapacitor electrodes | en |
dc.contributor.author | Zhou, Luoxiao | |
dc.contributor.author | He, Ying | |
dc.contributor.author | Jia, Congpu | |
dc.contributor.author | Pavlínek, Vladimír | |
dc.contributor.author | Sáha, Petr | |
dc.contributor.author | Cheng, Qilin | |
dc.relation.ispartof | Nanomaterials | |
dc.identifier.issn | 2079-4991 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2017 | |
utb.relation.volume | 7 | |
utb.relation.issue | 9 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | MDPI AG | |
dc.identifier.doi | 10.3390/nano7090273 | |
dc.relation.uri | http://www.mdpi.com/2079-4991/7/9/273/htm | |
dc.subject | copper oxide | en |
dc.subject | nickel cobalt sulfide | en |
dc.subject | hierarchical composite nanowires | en |
dc.subject | supercapacitor | en |
dc.subject | electrochemical properties | en |
dc.description.abstract | Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu2O@NiCo2S4) core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu2O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo2S4 nanosheets on the surface of CuO/Cu2O nanowires to form the CuO/Cu2O@NiCo2S4 core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo2S4 nanosheets is ~20 nm and the diameter of CuO/Cu2O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm-2 at 10 mA cm-2, good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm-2) and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm-2. These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer. © 2017 by the authors. Licensee MDPI, Basel, Switzerland. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1007498 | |
utb.identifier.obdid | 43877156 | |
utb.identifier.scopus | 2-s2.0-85029754870 | |
utb.identifier.wok | 000411522600042 | |
utb.source | j-scopus | |
dc.date.accessioned | 2017-10-16T14:43:39Z | |
dc.date.available | 2017-10-16T14:43:39Z | |
dc.description.sponsorship | 21371057, NSFC, National Natural Science Foundation of China | |
dc.description.sponsorship | National Key R&D Program of China [2016YFE0131200]; National Natural Science Foundation of China [21371057]; International Cooperation Project of Shanghai Municipal Science and Technology Committee [15520721100] | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | He, Ying | |
utb.contributor.internalauthor | Pavlínek, Vladimír | |
utb.contributor.internalauthor | Sáha, Petr | |
utb.contributor.internalauthor | Cheng, Qilin | |
utb.fulltext.affiliation | Luoxiao Zhou 1 , Ying He 1,2, *, Congpu Jia 1 , Vladimir Pavlinek 2 , Petr Saha 2 and Qilin Cheng 1,2, * 1 Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China; [email protected] (L.Z.); [email protected] (C.J.) 2 Centre of Polymer Systems, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic; [email protected] (V.P.); [email protected] (P.S.) * Correspondence: [email protected] (Y.H.); [email protected] (Q.C.); Tel.: +86-21-64251186 (Y.H.); +86-21-64252181 (Q.C.) | |
utb.fulltext.dates | Received: 13 August 2017 Accepted: 11 September 2017 Published: 15 September 2017 | |
utb.fulltext.references | 1. El-Kady, M.F.; Strong, V.; Dubin, S.; Kaner, R.B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330. [CrossRef] [PubMed] 2. Yu, Z.; Duong, B.; Abbitt, D.; Thomas, J. Highly ordered MnO 2 nanopillars for enhanced supercapacitor performance. Adv. Mater. 2013, 25, 3302–3306. [CrossRef] [PubMed] 3. Su, D.; McDonagh, A.; Qiao, S.; Wang, G. High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 2017, 29, 1604007. [CrossRef] [PubMed] 4. Lin, K.; Chen, Q.; Gerhardt, M.; Tong, L.; Kim, S.; Eisenach, L.; Valle, A.; Hardee, D.; Gordon, R.; Aziz, M.; et al. Alkaline quinone flow battery. Science 2015, 349, 1529–1532. [CrossRef] [PubMed] 5. Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211. [CrossRef] [PubMed] 6. Huang, Y.; Tao, J.; Meng, W.; Zhu, M.; Huang, Y.; Fu, Y.; Gao, Y.; Zhi, C. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 2015, 11, 518–525. [CrossRef] 7. Chen, T.; Hao, R.; Peng, H.; Dai, L. High-performance, stretchable, wire-shaped supercapacitors. Angew. Chem. Int. Ed. 2015, 54, 618–622. [CrossRef] 8. Liu, C.; Li, F.; Lai, P.M.; Cheng, H. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62. [CrossRef] [PubMed] 9. Li, B.; Dai, F.; Xiao, Q.; Yang, L.; Shen, J.; Zhang, C.; Cai, M. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 2016, 9, 102–106. [CrossRef] 10. Gawli, Y.; Banerjee, A.; Dhakras, D.; Deo, M.; Bulani, D.; Wadgaonkar, P.; Shelke, M.; Ogale, S. 3D polyaniline architecture by concurrent inorganic and organic acid doping for superior and robust high rate supercapacitor performance. Sci. Rep. 2016, 6, 21002. [CrossRef] [PubMed] 11. Liu, X.; Gao, Y.; Yang, G. A flexible, transparent and super-long-life supercapacitor based on ultrafine Co 3 O 4 nanocrystal electrodes. Nanoscale 2016, 8, 4227–4235. [CrossRef] [PubMed] 12. Xiong, G.; He, P.; Wang, D.; Zhang, Q.; Chen, T.; Fisher, T. Hierarchical Ni–Co hydroxide petals on mechanically robust graphene petal poam for high-energy asymmetric supercapacitors. Adv. Funct. Mater. 2016, 26, 5460–5470. [CrossRef] 13. Dai, Z.; Zang, X.; Yang, J.; Sun, C.; Si, W.; Huang, W.; Dong, X. Template synthesis of shape-tailorable NiS 2 hollow prisms as high-performance supercapacitor materials. ACS Appl. Mater. Interfaces 2015, 7, 25396–25401. [CrossRef] [PubMed] 14. Chen, J.; Guan, G.; Gui, Y.; Blackwood, D. Rational design of self-supported Ni 3 S 2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density. ACS Appl. Mater. Interfaces 2017, 9, 496–504. [CrossRef] [PubMed] 15. Liu, S.; Mao, C.; Niu, Y.; Yi, F.; Hou, J.; Lu, S.; Jiang, J.; Xu, M.; Li, C. Facile synthesis of novel networked ultralong cobalt sulde nanotubes and its application in supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 25568–25573. [CrossRef] [PubMed] 16. Peters, A.; Li, Z.; Farha, O.; Hupp, J. Atomically precise growth of catalytically active cobalt sulde on flat surfaces and within a metal-organic framework via atomic layer deposition. ACS Nano 2015, 9, 8484–8490. [CrossRef] [PubMed] 17. Guan, B.; Yu, L.; Wang, X.; Song, S.; Lou, X. Formation of onion-like NiCo 2 S 4 particles via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 2017, 29, 1605051. [CrossRef] [PubMed] 18. Hou, L.; Bao, R.; Chen, Z.; Rehan, M.; Tong, L.; Pang, G.; Yuan, C. Comparative investigation of hollow mesoporous NiCo 2 S 4 ellipsoids with enhanced pseudo-capacitances towards high-performance asymmetric supercapacitors. Electrochim. Acta 2016, 214, 76–84. [CrossRef] 19. Kong, W.; Lu, C.; Zhang, W.; Pu, J.; Wang, Z. Homogeneous core-shell NiCo 2 S 4 nanostructures supported on nickel foam for supercapacitors. J. Mater. Chem. A 2015, 3, 12452–12460. [CrossRef] 20. Xiao, J.; Zeng, X.; Chen, W.; Xiao, F.; Wang, S. High electrocatalytic activity of self-standing hollow NiCo 2 S 4 single crystalline nanorod arrays towards sulfide redox shuttles in quantum dot-sensitized solar cells. Chem. Commun. 2013, 49, 11734–11736. [CrossRef] [PubMed] 21. Wang, J.-G.; Jin, D.; Zhou, R.; Shen, C.; Xie, K.; Wei, B. One-step synthesis of NiCo 2 S 4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. J. Power Sources 2016, 306, 100–106. [CrossRef] 22. Wang, J.-G.; Zhou, R.; Jin, D.; Xie, K.; Wei, B. Controlled synthesis of NiCo 2 S 4 nanostructures on nickel foams for high-performance supercapacitors. Energy Storage Mater. 2016, 2, 1–7. [CrossRef] 23. Shen, L.; Wang, J.; Xu, G.; Li, H.; Dou, H.; Zhang, X. NiCo 2 S 4 Nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv. Energy Mater. 2015, 5, 1400977. [CrossRef] 24. Niu, L.; Wang, Y.; Ruan, F.; Shen, C.; Shan, S.; Xu, M.; Sun, Z.; Li, C.; Liu, X.; Gong, Y. In situ growth of NiCo 2 S 4 @Ni 3 V 2 O 8 on Ni foam as binder-free electrode for asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 5669–5677. [CrossRef] 25. Fu, W.; Zhao, C.; Han, W.; Liu, Y.; Zhao, H.; Ma, Y.; Xie, E. Cobalt sulfide nanosheets coated on NiCo 2 S 4 nanotube arrays as electrode materials for high-performance supercapacitors. J. Mater. Chem. A 2015, 3, 10492–10497. [CrossRef] 26. Xu, W.; Dai, S.; Liu, G.; Xi, Y.; Hu, C.; Wang, X. CuO nanoflowers growing on carbon fiber fabric for flexible high-performance supercapacitors. Electrochim. Acta 2016, 203, 1–8. [CrossRef] 27. Xu, P.; Liu, J.; Liu, T.; Ye, K.; Cheng, K.; Yin, J.; Cao, D.; Wang, G.; Li, Q. Preparation of binder-free CuO/Cu 2 O/Cu composites: A novel electrode material for supercapacitor applications. RSC Adv. 2016, 6, 28270–28278. [CrossRef] 28. Zhang, J.; Zhang, G.; Luo, W.; Sun, Y.; Jin, C.; Zhang, W. Graphitic carbon coated CuO hollow nanospheres with penetrated mesochannels for high-performance asymmetric supercapacitors. ACS Sustain. Chem. Eng. 2017, 5, 105–111. [CrossRef] 29. Yang, Y.; Pei, L.; Xu, X.; Xu, J.; Shen, J.; Ye, M. In-situ growth of self-assembled 3D Cu 2 O@Cu foam with enhanced electrochemical properties. Electrochim. Acta 2016, 221, 56–61. [CrossRef] 30. Ruan, J.; Huo, Y.; Hu, B. Three-dimensional Ni(OH) 2 /Cu 2 O/CuO porous cluster grown on nickel foam for high performance supercapacitor. Electrochim. Acta 2016, 215, 108–113. [CrossRef] 31. Li, Z.; Shao, M.; Zhou, L.; Zhang, R.; Zhang, C.; Han, J.; Wei, M.; Evans, D.; Duan, X. A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core–shell nanoarrays. Nano Energy 2016, 20, 294–304. [CrossRef] 32. Zhao, J.; Shu, X.; Wang, Y.; Yu, C.; Zhang, J.; Cui, J.; Qin, Y.; Zheng, H.; Liu, J.; Zhang, Y.; et al. Construction of CuO/Cu 2 O@CoO core-shell nanowire arrays for high-performance supercapacitors. Surf. Coat. Technol. 2016, 299, 15–21. [CrossRef] 33. Filipic, G.; Cvelbar, U. Copper oxide nanowires: A review of growth. Nanotechnology 2012, 23, 194001. [CrossRef] [PubMed] 34. Wu, F.; Myung, Y.; Banerjee, P. Unravelling transient phases during thermal oxidation of copper for dense CuO nanowire growth. CrystEngComm 2014, 16, 3264–3267. [CrossRef] 35. Lamberti, A.; Fontana, M.; Bianco, S.; Tresso, E. Flexible solid-state Cu x O-based pseudo-supercapacitor by thermal oxidation of copper foils. Int. J. Hydrog. Energy 2016, 41, 11700–11708. [CrossRef] 36. Chen, H.; Jiang, J.; Zhang, L.; Wan, H.; Qi, T.; Xia, D. Highly conductive NiCo 2 S 4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 2013, 5, 8879–8883. [CrossRef] [PubMed] 37. Sun, S.; Zhang, X.; Song, X.; Liang, S.; Wang, L.; Yang, Z. Bottom-up assembly of hierarchical Cu 2 O nanospheres: Controllable synthesis, formation mechanism and enhanced photochemical activities. CrystEngComm 2012, 14, 3545–3553. [CrossRef] 38. Li, B.; Liu, T.; Hu, L.; Wang, Y. A facile one-pot synthesis of Cu 2 O/RGO nanocomposite for removal of organic pollutant. J. Phys. Chem. Solids 2013, 74, 635–640. [CrossRef] 39. Dubal, D.; Gund, G.; Holze, R.; Lokhande, C. Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. J. Power Sources 2013, 242, 687–698. [CrossRef] 40. Hu, W.; Chen, R.; Xie, W.; Zou, L.; Qin, N.; Bao, D. CoNi 2 S 4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl. Mater. Interfaces 2014, 6, 19318–19326. [CrossRef] [PubMed] 41. Sun, H.; Qin, D.; Huang, S.; Guo, X.; Li, D.; Luo, Y.; Men, Q. Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci. 2011, 4, 2630–2637. [CrossRef] 42. Pu, J.; Cui, F.; Chu, S.; Wang, T.; Sheng, E.; Wang, Z. Preparation and electrochemical characterization of hollow hexagonal NiCo 2 S 4 nanoplates as pseudocapacitor materials. ACS Sustain. Chem. Eng. 2014, 2, 809–815. [CrossRef] 43. Legrand, D.; Nesbitt, H.; Bancroft, G. X-ray photoelectron spectroscopic study of a pristine millerite (NiS) surface and the effect of air and water oxidation. Am. Mineral. 1998, 83, 1256–1265. [CrossRef] 44. Chen, W.; Xia, C.; Alshareef, H. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 2014, 8, 9531–9541. [CrossRef] [PubMed] 45. Pu, J.; Wang, T.; Wang, H.; Tong, Y.; Lu, C.; Kong, W.; Wang, Z. Direct growth of NiCo 2 S 4 nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors. ChemPlusChem 2014, 45, 577–583. 46. Wan, H.; Jiang, J.; Yu, J.; Xu, K.; Miao, L.; Zhang, L.; Chen, K.; Ruan, Y. NiCo 2 S 4 porous nanotubes synthesis via sacrificial templates: High-performance electrode materials of supercapacitors. CrystEngComm 2013, 15, 7649–7651. [CrossRef] 47. Yuan, C.; Li, J.; Hou, L.; Zhang, X.; Shen, L.; Lou, X. Ultrathin mesoporous NiCo 2 O 4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 2012, 22, 4592–4597. [CrossRef] 48. Chen, H.; Jiang, J.; Zhang, L.; Xia, D.; Zhao, Y.; Guo, D.; Qi, T.; Wan, H. In situ growth of NiCo 2 S 4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J. Power Sources 2014, 254, 249–257. [CrossRef] 49. Wang, J.; Wang, S.; Huang, Z.; Yu, Y. High-performance NiCo 2 O 4 @Ni 3 S 2 core/shell mesoporous nanothorn arrays on Ni foam for supercapacitors. J. Mater. Chem. A 2014, 2, 17595–17601. [CrossRef] 50. Nguyen, V.; Lamiel, C.; Shim, J. 3D hierarchical mesoporous NiCo 2 S 4 @Ni(OH) 2 core-shell nanosheet arrays for high performance supercapacitors. New J. Chem. 2016, 40, 4810–4817. [CrossRef] | |
utb.fulltext.sponsorship | This work was supported by National Key R&D Program of China (2016YFE0131200), the National Natural Science Foundation of China (21371057) and International Cooperation Project of Shanghai Municipal Science and Technology Committee (15520721100). | |
utb.scopus.affiliation | Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China; Centre of Polymer Systems, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, Zlin, Czech Republic | |
utb.fulltext.projects | 2016YFE0131200 | |
utb.fulltext.projects | 21371057 | |
utb.fulltext.projects | 15520721100 |