Kontaktujte nás | Jazyk: čeština English
dc.title | Control law and pseudo neural networks synthesized by evolutionary symbolic regression technique | en |
dc.contributor.author | Komínková Oplatková, Zuzana | |
dc.contributor.author | Šenkeřík, Roman | |
dc.relation.ispartof | Seminal Contributions to Modelling and Simulation: 30 Years of the European Council of Modelling and Simulation | |
dc.identifier.issn | 2195-2817 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2016 | |
dc.citation.spage | 91 | |
dc.citation.epage | 113 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Springer International Publishing AG | |
dc.identifier.doi | 10.1007/978-3-319-33786-9_9 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-3-319-33786-9_9 | |
dc.subject | Analytic programming | en |
dc.subject | Differential evolution | en |
dc.subject | Control law | en |
dc.subject | Pseudo neural network | en |
dc.description.abstract | This research deals with synthesis of final complex expressions by means of an evolutionary symbolic regression technique-analytic programming (AP)for novel approach to classification and system control. In the first case, classification technique-pseudo neural network is synthesized, i. e. relation between inputs and outputs created. The inspiration came from classical artificial neural networks where such a relation between inputs and outputs is based on the mathematical transfer functions and optimized numerical weights. AP will synthesize a whole expression at once. The latter case, the AP will create chaotic controller that secures the stabilization of stable state and high periodic orbit-oscillations between several values of discrete chaotic system. Both cases will produce a mathematical relation with several inputs, the latter case uses several historical values from the time series. For experimentation, Differential Evolution (DE) for the main procedure and also for meta-evolution version of analytic programming (AP) was used. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1007409 | |
utb.identifier.obdid | 43876368 | |
utb.identifier.wok | 000389485000010 | |
utb.source | d-wok | |
dc.date.accessioned | 2017-09-08T12:14:53Z | |
dc.date.available | 2017-09-08T12:14:53Z | |
utb.contributor.internalauthor | Komínková Oplatková, Zuzana | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.fulltext.affiliation | Zuzana Kominkova Oplatkova and Roman Senkerik Z.K. Oplatkova (✉) R. Senkerik Faculty of Applied Informatics, Tomas Bata University in Zlin, Nam T.G. Masaryka 5555, 760 01 Zlin, Czech Republic e-mail: [email protected] R. Senkerik e-mail: [email protected] | |
utb.fulltext.dates | - | |
utb.fulltext.references | 1. Back T, Fogel DB, Michalewicz Z (1997) Handbook of evolutionary algorithms. Oxford University Press. ISBN: 0750303921 2. Deugo D, Ferguson D (2004) Evolution to the Xtreme: evolving evolutionary strategies using a meta-level approach. In: Proceedings of the 2004 IEEE congress on evolutionary computation. IEEE Press, Portland, Oregon, pp 31–38 3. Dioşan L, Oltean M (2009) Evolutionary design of evolutionary algorithms. Genet Program Evolvable Mach 10(3):263–306 4. Edmonds B (2001) Meta-genetic programming: co-evolving the operators of variation. Elektrik 9(1):13–29 5. Eiben AE, Michalewicz Z, Schoenauer M, Smith JE (2007) Parameter control in evolutionary algorithms. Springer, pp 19–46 6. Fausett LV (1993) Fundamentals of neural networks: architectures, algorithms and applications. Prentice Hall, ISBN: 9780133341867 7. Fekiac J, Zelinka I, Burguillo JC (2011) A review of methods for encoding neural network topologies in evolutionary computation. In: ECMS 2011, Krakow, Poland, ISBN: 978-0-9564944-3-6 8. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann. Eugenics 7 (2):179–188. doi:10.1111/j.1469-1809.1936.tb02137.x 9. Gurney K (1997) An introduction to neural networks. CRC Press, ISBN: 1857285034 10. Hertz J, Kogh A, Palmer RG (1991) Introduction to the theory of neural computation. Addison-Wesley 11. Hilborn RC (2000) Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press, ISBN: 0-19-850723-2 12. Jones DF, Mirrazavi SK, Tamiz M (2002) Multi-objective meta-heuristics: an overview of the current state-of-the-art. Eur J Oper Res 137(1):1–9, ISSN: 0377-2217 13. Just W (1999) Principles of time delayed feedback control. In: Schuster HG (ed) Handbook of chaos control. Wiley-Vch, ISBN: 3-527-29436-8 14. Kalczynski PJ, Kamburowski J (2007) On the NEH heuristic for minimizing the makespan in permutation flow shops. Omega 35(1):53–60 15. Kordík P, Koutník J, Drchal J, Kovářík O, Čepek M, Šnorek M (2010) Meta-learning approach to neural network optimization. Neural Netw 23(4):568–582, ISSN: 0893-6080 16. Koza JR et al (1999) Genetic programming III; darwinian invention and problem solving. Morgan Kaufmann Publisher, ISBN: 1-55860-543-6 17. Koza JR (1998) Genetic programming. MIT Press, ISBN: 0-262-11189-6 18. Kwon OJ (1999) Targeting and stabilizing chaotic trajectories in the standard map. Phys Lett A 258:229–236 19. Lampinen J, Zelinka I (1999) New ideas in optimization—mechanical engineering design optimization by differential evolution, vol 1. McGraw-hill, London, 20p, ISBN: 007-709506-5 20. Machine learning repository with Iris data set http://archive.ics.uci.edu/ml/datasets/Iris 21. Murty KG (1983) Linear programming. Wiley, New York, ISBN: 0-471-09725-X 22. Murty KG (1988) Linear complementarity, linear and nonlinear programming, Sigma series in applied mathematics. Heldermann Verlag, Berlin, ISBN: 3-88538-403-5 23. O’Neill M, Ryan C (2003) Grammatical evolution. Evolutionary automatic programming in an arbitrary language. Kluwer Academic Publishers, ISBN: 1402074441 24. Oplatkova Z (2009) Metaevolution: synthesis of optimization algorithms by means of symbolic regression and evolutionary algorithms. Lambert Academic Publishing Saarbrücken, ISBN: 978-3-8383-1808-0 25. Oplatková Z, Zelinka I (2009) Investigation on evolutionary synthesis of movement commands, modelling and simulation in engineering, vol 2009, Article ID 845080, 12p. Hindawi Publishing Corporation, ISSN: 1687-559 26. Oplatkova Z, Senkerik R, Zelinka I, Holoska J (2010) Synthesis of control law for Chaotic Henon system—preliminary study, ECMS 2010, Kuala Lumpur, Malaysia, pp 277–282, ISBN: 978-0-9564944-0-5 27. Oplatkova Z, Senkerik R, Belaskova S, Zelinka I (2010) Synthesis of control rule for synthesized chaotic system by means of evolutionary techniques, Mendel 2010, Brno, Czech Republic, pp 91–98, ISBN: 978-80-214-4120-0 28. Ott E, Greboki C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64:1196–1199 29. Price K, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization, (Natural computing series), 1st edn. Springer 30. Price K, Storn R (2001) Differential evolution homepage. http://www.icsi.berkeley.edu/~storn/code.html, [Accessed 29/02/2012] 31. Pyragas K (1992) Continuous control of chaos by self-controlling feedback. Phys Lett A 170:421–428 32. Pyragas K (1995) Control of chaos via extended delay feedback. Phys Lett A 206:323–330 33. Senkerik R, Zelinka I, Navratil E (2006) Optimization of feedback control of chaos by evolutionary algorithms. In: Proceedings 1st IFAC conference on analysis and control of chaotic systems, Reims, France, pp 97–102 34. Senkerik R, Zelinka I, Davendra D, Oplatkova Z (2009) Utilization of SOMA and differential evolution for robust stabilization of chaotic logistic equation. Comput Math Appl 60(4):1026– 1037 35. Senkerik R, Oplatkova Z, Zelinka I, Davendra D, Jasek R (2010) Synthesis of feedback controller for chaotic systems by means of evolutionary techniques. In: Proceeding of fourth global conference on power control and optimization, Sarawak, Borneo (2010) 36. Smith J, Fogarty T (1997) Operator and parameter adaptation in genetic algorithms. Soft Comput 1(2):81–87 37. Voutsinas TG, Pappis CP (2010) A branch and bound algorithm for single machine scheduling with deteriorating values of jobs. Math Comput Model 52(1–2):55–61 38. Wasserman PD (1980) Neural computing: theory and practice. Coriolis Group, ISBN: 0442207433 39. Zelinka et al (2004) Analytical programming—a novel approach for evolutionary synthesis of symbolic structures, in Kita E.: evolutionary algorithms, InTech 2011, ISBN: 978-953-307-171-8 40. Varacha P, Zelinka I, Oplatkova Z (2006) Evolutionary synthesis of neural network, Mendel 2006—12th international conference on softcomputing, Brno, Czech Republic, 31 May–2 June 2006, pp 25–31, ISBN: 80-214-3195-4 41. Zelinka I,Oplatkova Z, Nolle L (2005) Boolean symmetry function synthesis by means of arbitrary evolutionary algorithms-comparative study. Int J Simul Syst Sci Technol 6(9):44–56, ISSN: 1473-8031 42. Zelinka I, Senkerik R, Navratil E (2009) Investigation on evolutionary optimization of chaos control. Chaos Solitons Fractals 40(1):111–129 43. Zelinka I, Guanrong Ch, Celikovsky S (2008) Chaos synthesis by means of evolutionary algorithms. Int J Bifurcat Chaos 18(4):911–942 | |
utb.fulltext.sponsorship | This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme project No. LO1303 (MSMT-7778/2014) and also by the European Regional Development Fund under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089, further it was supported by Grant Agency of the Czech Republic—GACR 588P103/15/06700S. |